""" A custom layer for 'priorbox' which is used in ssd to generate prior box info Since the order of prior box is different between caffe and paddle, we use 'slice' and 'concate' ops to align them. """ from .register import register def priorbox_shape(input_shapes, min_size, max_size=None, aspect_ratio=None): """ calculate the output shape of this layer using input shapes Args: @input_shapes (list of tuples): a list of input shapes Returns: @output_shape (list of num): a list of numbers represent the output shape """ assert len(input_shapes) == 2, "invalid inputs for Priorbox[%s]" % (name) fc_shape = input_shapes[0] N = 1 if not max_size == None: N += 1 if not aspect_ratio == None: N += 2 * len(aspect_ratio) N_bbx = fc_shape[2] * fc_shape[3] * N output_shape = [1, 2, 4 * N_bbx] return output_shape def priorbox_layer(inputs, name, min_size, max_size=None, aspect_ratio=None, variance=[0.1, 0.1, 0.2, 0.2], flip=False, clip=False, step=0.0, offset=0.5): """ build a layer of type 'Priorbox' using fluid Args: @inputs (list of variables): input fluid variables for this layer @name (str): name for this layer Returns: output (variable): output variable for this layer """ import paddle.fluid as fluid assert len(inputs) == 2, "invalid inputs for Priorbox[%s]" % (name) input = inputs[0] image = inputs[1] steps = tuple(step) if type(step) is list or type(step) is tuple else (step, step) box, variance_ = fluid.layers.prior_box( input, image, min_size, max_size, aspect_ratio, variance, flip, clip, steps, offset, min_max_aspect_ratios_order=True) """ #adjust layout when the output is not consistent with caffe's feat_shape = list(input.shape) H = feat_shape[2] W = feat_shape[3] box_tmp = fluid.layers.reshape(box, [H, W, -1, 4]) nb_prior_bbx = int(box_tmp.shape[2]) tensor_list = fluid.layers.split(box_tmp, nb_prior_bbx, 2) #TODO: # current implementation for this layer is not efficient # and we should fix this bug in future when Paddle support the same prior-box layout with Caffe index_list = [0] index_list = index_list * nb_prior_bbx index_offset = 0 if max_size is not None: index_list[1] = -1 index_offset = 1 for ii in xrange(2 * len(aspect_ratio)): index_list[ii + 1 + index_offset] = ii + 1 tensor_list_gathered = [tensor_list[ii] for ii in index_list] caffe_prior_bbx = fluid.layers.concat(tensor_list_gathered, axis=2) box = fluid.layers.reshape(caffe_prior_bbx, [1, 1, -1]) """ box = fluid.layers.reshape(box, [1, 1, -1]) variance_ = fluid.layers.reshape(variance_, [1, 1, -1]) output = fluid.layers.concat([box, variance_], axis=1) return output register(kind='PriorBox', shape=priorbox_shape, layer=priorbox_layer)