syntax = "proto2"; package caffe; // Specifies the shape (dimensions) of a Blob. message BlobShape { repeated int64 dim = 1 [ packed = true ]; } message BlobProto { optional BlobShape shape = 7; repeated float data = 5 [ packed = true ]; repeated float diff = 6 [ packed = true ]; repeated double double_data = 8 [ packed = true ]; repeated double double_diff = 9 [ packed = true ]; // 4D dimensions -- deprecated. Use "shape" instead. optional int32 num = 1 [ default = 0 ]; optional int32 channels = 2 [ default = 0 ]; optional int32 height = 3 [ default = 0 ]; optional int32 width = 4 [ default = 0 ]; } // The BlobProtoVector is simply a way to pass multiple blobproto instances // around. message BlobProtoVector { repeated BlobProto blobs = 1; } message Datum { optional int32 channels = 1; optional int32 height = 2; optional int32 width = 3; // the actual image data, in bytes optional bytes data = 4; optional int32 label = 5; // Optionally, the datum could also hold float data. repeated float float_data = 6; // If true data contains an encoded image that need to be decoded optional bool encoded = 7 [ default = false ]; } message FillerParameter { // The filler type. optional string type = 1 [ default = 'constant' ]; optional float value = 2 [ default = 0 ]; // the value in constant filler optional float min = 3 [ default = 0 ]; // the min value in uniform filler optional float max = 4 [ default = 1 ]; // the max value in uniform filler optional float mean = 5 [ default = 0 ]; // the mean value in Gaussian filler optional float std = 6 [ default = 1 ]; // the std value in Gaussian filler // The expected number of non-zero output weights for a given input in // Gaussian filler -- the default -1 means don't perform sparsification. optional int32 sparse = 7 [ default = -1 ]; // Normalize the filler variance by fan_in, fan_out, or their average. // Applies to 'xavier' and 'msra' fillers. enum VarianceNorm { FAN_IN = 0; FAN_OUT = 1; AVERAGE = 2; } optional VarianceNorm variance_norm = 8 [ default = FAN_IN ]; } message NetParameter { optional string name = 1; // consider giving the network a name // DEPRECATED. See InputParameter. The input blobs to the network. repeated string input = 3; // DEPRECATED. See InputParameter. The shape of the input blobs. repeated BlobShape input_shape = 8; // 4D input dimensions -- deprecated. Use "input_shape" instead. // If specified, for each input blob there should be four // values specifying the num, channels, height and width of the input blob. // Thus, there should be a total of (4 * #input) numbers. repeated int32 input_dim = 4; // Whether the network will force every layer to carry out backward operation. // If set False, then whether to carry out backward is determined // automatically according to the net structure and learning rates. optional bool force_backward = 5 [ default = false ]; // The current "state" of the network, including the phase, level, and stage. // Some layers may be included/excluded depending on this state and the states // specified in the layers' include and exclude fields. optional NetState state = 6; // Print debugging information about results while running Net::Forward, // Net::Backward, and Net::Update. optional bool debug_info = 7 [ default = false ]; // The layers that make up the net. Each of their configurations, including // connectivity and behavior, is specified as a LayerParameter. repeated LayerParameter layer = 100; // ID 100 so layers are printed last. // DEPRECATED: use 'layer' instead. repeated V1LayerParameter layers = 2; } // NOTE // Update the next available ID when you add a new SolverParameter field. // // SolverParameter next available ID: 42 (last added: layer_wise_reduce) message SolverParameter { ////////////////////////////////////////////////////////////////////////////// // Specifying the train and test networks // // Exactly one train net must be specified using one of the following fields: // train_net_param, train_net, net_param, net // One or more test nets may be specified using any of the following fields: // test_net_param, test_net, net_param, net // If more than one test net field is specified (e.g., both net and // test_net are specified), they will be evaluated in the field order given // above: (1) test_net_param, (2) test_net, (3) net_param/net. // A test_iter must be specified for each test_net. // A test_level and/or a test_stage may also be specified for each test_net. ////////////////////////////////////////////////////////////////////////////// // Proto filename for the train net, possibly combined with one or more // test nets. optional string net = 24; // Inline train net param, possibly combined with one or more test nets. optional NetParameter net_param = 25; optional string train_net = 1; // Proto filename for the train net. repeated string test_net = 2; // Proto filenames for the test nets. optional NetParameter train_net_param = 21; // Inline train net params. repeated NetParameter test_net_param = 22; // Inline test net params. // The states for the train/test nets. Must be unspecified or // specified once per net. // // By default, train_state will have phase = TRAIN, // and all test_state's will have phase = TEST. // Other defaults are set according to the NetState defaults. optional NetState train_state = 26; repeated NetState test_state = 27; // The number of iterations for each test net. repeated int32 test_iter = 3; // The number of iterations between two testing phases. optional int32 test_interval = 4 [ default = 0 ]; optional bool test_compute_loss = 19 [ default = false ]; // If true, run an initial test pass before the first iteration, // ensuring memory availability and printing the starting value of the loss. optional bool test_initialization = 32 [ default = true ]; optional float base_lr = 5; // The base learning rate // the number of iterations between displaying info. If display = 0, no info // will be displayed. optional int32 display = 6; // Display the loss averaged over the last average_loss iterations optional int32 average_loss = 33 [ default = 1 ]; optional int32 max_iter = 7; // the maximum number of iterations // accumulate gradients over `iter_size` x `batch_size` instances optional int32 iter_size = 36 [ default = 1 ]; // The learning rate decay policy. The currently implemented learning rate // policies are as follows: // - fixed: always return base_lr. // - step: return base_lr * gamma ^ (floor(iter / step)) // - exp: return base_lr * gamma ^ iter // - inv: return base_lr * (1 + gamma * iter) ^ (- power) // - multistep: similar to step but it allows non uniform steps defined by // stepvalue // - poly: the effective learning rate follows a polynomial decay, to be // zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power) // - sigmoid: the effective learning rate follows a sigmod decay // return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize)))) // // where base_lr, max_iter, gamma, step, stepvalue and power are defined // in the solver parameter protocol buffer, and iter is the current iteration. optional string lr_policy = 8; optional float gamma = 9; // The parameter to compute the learning rate. optional float power = 10; // The parameter to compute the learning rate. optional float momentum = 11; // The momentum value. optional float weight_decay = 12; // The weight decay. // regularization types supported: L1 and L2 // controlled by weight_decay optional string regularization_type = 29 [ default = "L2" ]; // the stepsize for learning rate policy "step" optional int32 stepsize = 13; // the stepsize for learning rate policy "multistep" repeated int32 stepvalue = 34; // Set clip_gradients to >= 0 to clip parameter gradients to that L2 norm, // whenever their actual L2 norm is larger. optional float clip_gradients = 35 [ default = -1 ]; optional int32 snapshot = 14 [ default = 0 ]; // The snapshot interval optional string snapshot_prefix = 15; // The prefix for the snapshot. // whether to snapshot diff in the results or not. Snapshotting diff will help // debugging but the final protocol buffer size will be much larger. optional bool snapshot_diff = 16 [ default = false ]; enum SnapshotFormat { HDF5 = 0; BINARYPROTO = 1; } optional SnapshotFormat snapshot_format = 37 [ default = BINARYPROTO ]; // the mode solver will use: 0 for CPU and 1 for GPU. Use GPU in default. enum SolverMode { CPU = 0; GPU = 1; } optional SolverMode solver_mode = 17 [ default = GPU ]; // the device_id will that be used in GPU mode. Use device_id = 0 in default. optional int32 device_id = 18 [ default = 0 ]; // If non-negative, the seed with which the Solver will initialize the Caffe // random number generator -- useful for reproducible results. Otherwise, // (and by default) initialize using a seed derived from the system clock. optional int64 random_seed = 20 [ default = -1 ]; // type of the solver optional string type = 40 [ default = "SGD" ]; // numerical stability for RMSProp, AdaGrad and AdaDelta and Adam optional float delta = 31 [ default = 1e-8 ]; // parameters for the Adam solver optional float momentum2 = 39 [ default = 0.999 ]; // RMSProp decay value // MeanSquare(t) = rms_decay*MeanSquare(t-1) + (1-rms_decay)*SquareGradient(t) optional float rms_decay = 38 [ default = 0.99 ]; // If true, print information about the state of the net that may help with // debugging learning problems. optional bool debug_info = 23 [ default = false ]; // If false, don't save a snapshot after training finishes. optional bool snapshot_after_train = 28 [ default = true ]; // DEPRECATED: old solver enum types, use string instead enum SolverType { SGD = 0; NESTEROV = 1; ADAGRAD = 2; RMSPROP = 3; ADADELTA = 4; ADAM = 5; } // DEPRECATED: use type instead of solver_type optional SolverType solver_type = 30 [ default = SGD ]; // Overlap compute and communication for data parallel training optional bool layer_wise_reduce = 41 [ default = true ]; } // A message that stores the solver snapshots message SolverState { optional int32 iter = 1; // The current iteration optional string learned_net = 2; // The file that stores the learned net. repeated BlobProto history = 3; // The history for sgd solvers optional int32 current_step = 4 [ default = 0 ]; // The current step for learning rate } enum Phase { TRAIN = 0; TEST = 1; } message NetState { optional Phase phase = 1 [ default = TEST ]; optional int32 level = 2 [ default = 0 ]; repeated string stage = 3; } message NetStateRule { // Set phase to require the NetState have a particular phase (TRAIN or TEST) // to meet this rule. optional Phase phase = 1; // Set the minimum and/or maximum levels in which the layer should be used. // Leave undefined to meet the rule regardless of level. optional int32 min_level = 2; optional int32 max_level = 3; // Customizable sets of stages to include or exclude. // The net must have ALL of the specified stages and NONE of the specified // "not_stage"s to meet the rule. // (Use multiple NetStateRules to specify conjunctions of stages.) repeated string stage = 4; repeated string not_stage = 5; } // Specifies training parameters (multipliers on global learning constants, // and the name and other settings used for weight sharing). message ParamSpec { // The names of the parameter blobs -- useful for sharing parameters among // layers, but never required otherwise. To share a parameter between two // layers, give it a (non-empty) name. optional string name = 1; // Whether to require shared weights to have the same shape, or just the same // count -- defaults to STRICT if unspecified. optional DimCheckMode share_mode = 2; enum DimCheckMode { // STRICT (default) requires that num, channels, height, width each match. STRICT = 0; // PERMISSIVE requires only the count (num*channels*height*width) to match. PERMISSIVE = 1; } // The multiplier on the global learning rate for this parameter. optional float lr_mult = 3 [ default = 1.0 ]; // The multiplier on the global weight decay for this parameter. optional float decay_mult = 4 [ default = 1.0 ]; } // NOTE // Update the next available ID when you add a new LayerParameter field. // // LayerParameter next available layer-specific ID: 147 (last added: // recurrent_param) message LayerParameter { optional string name = 1; // the layer name optional string type = 2; // the layer type repeated string bottom = 3; // the name of each bottom blob repeated string top = 4; // the name of each top blob // The train / test phase for computation. optional Phase phase = 10; // The amount of weight to assign each top blob in the objective. // Each layer assigns a default value, usually of either 0 or 1, // to each top blob. repeated float loss_weight = 5; // Specifies training parameters (multipliers on global learning constants, // and the name and other settings used for weight sharing). repeated ParamSpec param = 6; // The blobs containing the numeric parameters of the layer. repeated BlobProto blobs = 7; // Specifies whether to backpropagate to each bottom. If unspecified, // Caffe will automatically infer whether each input needs backpropagation // to compute parameter gradients. If set to true for some inputs, // backpropagation to those inputs is forced; if set false for some inputs, // backpropagation to those inputs is skipped. // // The size must be either 0 or equal to the number of bottoms. repeated bool propagate_down = 11; // Rules controlling whether and when a layer is included in the network, // based on the current NetState. You may specify a non-zero number of rules // to include OR exclude, but not both. If no include or exclude rules are // specified, the layer is always included. If the current NetState meets // ANY (i.e., one or more) of the specified rules, the layer is // included/excluded. repeated NetStateRule include = 8; repeated NetStateRule exclude = 9; // Parameters for data pre-processing. optional TransformationParameter transform_param = 100; // Parameters shared by loss layers. optional LossParameter loss_param = 101; // Layer type-specific parameters. // // Note: certain layers may have more than one computational engine // for their implementation. These layers include an Engine type and // engine parameter for selecting the implementation. // The default for the engine is set by the ENGINE switch at compile-time. optional AccuracyParameter accuracy_param = 102; optional ArgMaxParameter argmax_param = 103; optional BatchNormParameter batch_norm_param = 139; optional BiasParameter bias_param = 141; optional ConcatParameter concat_param = 104; optional ContrastiveLossParameter contrastive_loss_param = 105; optional ConvolutionParameter convolution_param = 106; optional CropParameter crop_param = 144; optional DataParameter data_param = 107; optional DropoutParameter dropout_param = 108; optional DummyDataParameter dummy_data_param = 109; optional EltwiseParameter eltwise_param = 110; optional ELUParameter elu_param = 140; optional EmbedParameter embed_param = 137; optional ExpParameter exp_param = 111; optional FlattenParameter flatten_param = 135; optional HDF5DataParameter hdf5_data_param = 112; optional HDF5OutputParameter hdf5_output_param = 113; optional HingeLossParameter hinge_loss_param = 114; optional ImageDataParameter image_data_param = 115; optional InfogainLossParameter infogain_loss_param = 116; optional InnerProductParameter inner_product_param = 117; optional InputParameter input_param = 143; optional LogParameter log_param = 134; optional LRNParameter lrn_param = 118; optional MemoryDataParameter memory_data_param = 119; optional MVNParameter mvn_param = 120; optional ParameterParameter parameter_param = 145; optional PoolingParameter pooling_param = 121; optional PowerParameter power_param = 122; optional PReLUParameter prelu_param = 131; optional PythonParameter python_param = 130; optional RecurrentParameter recurrent_param = 146; optional ReductionParameter reduction_param = 136; optional ReLUParameter relu_param = 123; optional ReshapeParameter reshape_param = 133; optional ScaleParameter scale_param = 142; optional SigmoidParameter sigmoid_param = 124; optional SoftmaxParameter softmax_param = 125; optional SPPParameter spp_param = 132; optional SliceParameter slice_param = 126; optional TanHParameter tanh_param = 127; optional ThresholdParameter threshold_param = 128; optional TileParameter tile_param = 138; optional WindowDataParameter window_data_param = 129; } // Message that stores parameters used to apply transformation // to the data layer's data message TransformationParameter { // For data pre-processing, we can do simple scaling and subtracting the // data mean, if provided. Note that the mean subtraction is always carried // out before scaling. optional float scale = 1 [ default = 1 ]; // Specify if we want to randomly mirror data. optional bool mirror = 2 [ default = false ]; // Specify if we would like to randomly crop an image. optional uint32 crop_size = 3 [ default = 0 ]; // mean_file and mean_value cannot be specified at the same time optional string mean_file = 4; // if specified can be repeated once (would subtract it from all the channels) // or can be repeated the same number of times as channels // (would subtract them from the corresponding channel) repeated float mean_value = 5; // Force the decoded image to have 3 color channels. optional bool force_color = 6 [ default = false ]; // Force the decoded image to have 1 color channels. optional bool force_gray = 7 [ default = false ]; } // Message that stores parameters shared by loss layers message LossParameter { // If specified, ignore instances with the given label. optional int32 ignore_label = 1; // How to normalize the loss for loss layers that aggregate across batches, // spatial dimensions, or other dimensions. Currently only implemented in // SoftmaxWithLoss and SigmoidCrossEntropyLoss layers. enum NormalizationMode { // Divide by the number of examples in the batch times spatial dimensions. // Outputs that receive the ignore label will NOT be ignored in computing // the normalization factor. FULL = 0; // Divide by the total number of output locations that do not take the // ignore_label. If ignore_label is not set, this behaves like FULL. VALID = 1; // Divide by the batch size. BATCH_SIZE = 2; // Do not normalize the loss. NONE = 3; } // For historical reasons, the default normalization for // SigmoidCrossEntropyLoss is BATCH_SIZE and *not* VALID. optional NormalizationMode normalization = 3 [ default = VALID ]; // Deprecated. Ignored if normalization is specified. If normalization // is not specified, then setting this to false will be equivalent to // normalization = BATCH_SIZE to be consistent with previous behavior. optional bool normalize = 2; } // Messages that store parameters used by individual layer types follow, in // alphabetical order. message AccuracyParameter { // When computing accuracy, count as correct by comparing the true label to // the top k scoring classes. By default, only compare to the top scoring // class (i.e. argmax). optional uint32 top_k = 1 [ default = 1 ]; // The "label" axis of the prediction blob, whose argmax corresponds to the // predicted label -- may be negative to index from the end (e.g., -1 for the // last axis). For example, if axis == 1 and the predictions are // (N x C x H x W), the label blob is expected to contain N*H*W ground truth // labels with integer values in {0, 1, ..., C-1}. optional int32 axis = 2 [ default = 1 ]; // If specified, ignore instances with the given label. optional int32 ignore_label = 3; } message ArgMaxParameter { // If true produce pairs (argmax, maxval) optional bool out_max_val = 1 [ default = false ]; optional uint32 top_k = 2 [ default = 1 ]; // The axis along which to maximise -- may be negative to index from the // end (e.g., -1 for the last axis). // By default ArgMaxLayer maximizes over the flattened trailing dimensions // for each index of the first / num dimension. optional int32 axis = 3; } message ConcatParameter { // The axis along which to concatenate -- may be negative to index from the // end (e.g., -1 for the last axis). Other axes must have the // same dimension for all the bottom blobs. // By default, ConcatLayer concatenates blobs along the "channels" axis (1). optional int32 axis = 2 [ default = 1 ]; // DEPRECATED: alias for "axis" -- does not support negative indexing. optional uint32 concat_dim = 1 [ default = 1 ]; } message BatchNormParameter { // If false, normalization is performed over the current mini-batch // and global statistics are accumulated (but not yet used) by a moving // average. // If true, those accumulated mean and variance values are used for the // normalization. // By default, it is set to false when the network is in the training // phase and true when the network is in the testing phase. optional bool use_global_stats = 1; // What fraction of the moving average remains each iteration? // Smaller values make the moving average decay faster, giving more // weight to the recent values. // Each iteration updates the moving average @f$S_{t-1}@f$ with the // current mean @f$ Y_t @f$ by // @f$ S_t = (1-\beta)Y_t + \beta \cdot S_{t-1} @f$, where @f$ \beta @f$ // is the moving_average_fraction parameter. optional float moving_average_fraction = 2 [ default = .999 ]; // Small value to add to the variance estimate so that we don't divide by // zero. optional float eps = 3 [ default = 1e-5 ]; } message BiasParameter { // The first axis of bottom[0] (the first input Blob) along which to apply // bottom[1] (the second input Blob). May be negative to index from the end // (e.g., -1 for the last axis). // // For example, if bottom[0] is 4D with shape 100x3x40x60, the output // top[0] will have the same shape, and bottom[1] may have any of the // following shapes (for the given value of axis): // (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60 // (axis == 1 == -3) 3; 3x40; 3x40x60 // (axis == 2 == -2) 40; 40x60 // (axis == 3 == -1) 60 // Furthermore, bottom[1] may have the empty shape (regardless of the value of // "axis") -- a scalar bias. optional int32 axis = 1 [ default = 1 ]; // (num_axes is ignored unless just one bottom is given and the bias is // a learned parameter of the layer. Otherwise, num_axes is determined by the // number of axes by the second bottom.) // The number of axes of the input (bottom[0]) covered by the bias // parameter, or -1 to cover all axes of bottom[0] starting from `axis`. // Set num_axes := 0, to add a zero-axis Blob: a scalar. optional int32 num_axes = 2 [ default = 1 ]; // (filler is ignored unless just one bottom is given and the bias is // a learned parameter of the layer.) // The initialization for the learned bias parameter. // Default is the zero (0) initialization, resulting in the BiasLayer // initially performing the identity operation. optional FillerParameter filler = 3; } message ContrastiveLossParameter { // margin for dissimilar pair optional float margin = 1 [ default = 1.0 ]; // The first implementation of this cost did not exactly match the cost of // Hadsell et al 2006 -- using (margin - d^2) instead of (margin - d)^2. // legacy_version = false (the default) uses (margin - d)^2 as proposed in the // Hadsell paper. New models should probably use this version. // legacy_version = true uses (margin - d^2). This is kept to support / // reproduce existing models and results optional bool legacy_version = 2 [ default = false ]; } message ConvolutionParameter { optional uint32 num_output = 1; // The number of outputs for the layer optional bool bias_term = 2 [ default = true ]; // whether to have bias terms // Pad, kernel size, and stride are all given as a single value for equal // dimensions in all spatial dimensions, or once per spatial dimension. repeated uint32 pad = 3; // The padding size; defaults to 0 repeated uint32 kernel_size = 4; // The kernel size repeated uint32 stride = 6; // The stride; defaults to 1 // Factor used to dilate the kernel, (implicitly) zero-filling the resulting // holes. (Kernel dilation is sometimes referred to by its use in the // algorithme à trous from Holschneider et al. 1987.) repeated uint32 dilation = 18; // The dilation; defaults to 1 // For 2D convolution only, the *_h and *_w versions may also be used to // specify both spatial dimensions. optional uint32 pad_h = 9 [ default = 0 ]; // The padding height (2D only) optional uint32 pad_w = 10 [ default = 0 ]; // The padding width (2D only) optional uint32 kernel_h = 11; // The kernel height (2D only) optional uint32 kernel_w = 12; // The kernel width (2D only) optional uint32 stride_h = 13; // The stride height (2D only) optional uint32 stride_w = 14; // The stride width (2D only) optional uint32 group = 5 [ default = 1 ]; // The group size for group conv optional FillerParameter weight_filler = 7; // The filler for the weight optional FillerParameter bias_filler = 8; // The filler for the bias enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2; } optional Engine engine = 15 [ default = DEFAULT ]; // The axis to interpret as "channels" when performing convolution. // Preceding dimensions are treated as independent inputs; // succeeding dimensions are treated as "spatial". // With (N, C, H, W) inputs, and axis == 1 (the default), we perform // N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for // groups g>1) filters across the spatial axes (H, W) of the input. // With (N, C, D, H, W) inputs, and axis == 1, we perform // N independent 3D convolutions, sliding (C/g)-channels // filters across the spatial axes (D, H, W) of the input. optional int32 axis = 16 [ default = 1 ]; // Whether to force use of the general ND convolution, even if a specific // implementation for blobs of the appropriate number of spatial dimensions // is available. (Currently, there is only a 2D-specific convolution // implementation; for input blobs with num_axes != 2, this option is // ignored and the ND implementation will be used.) optional bool force_nd_im2col = 17 [ default = false ]; } message CropParameter { // To crop, elements of the first bottom are selected to fit the dimensions // of the second, reference bottom. The crop is configured by // - the crop `axis` to pick the dimensions for cropping // - the crop `offset` to set the shift for all/each dimension // to align the cropped bottom with the reference bottom. // All dimensions up to but excluding `axis` are preserved, while // the dimensions including and trailing `axis` are cropped. // If only one `offset` is set, then all dimensions are offset by this amount. // Otherwise, the number of offsets must equal the number of cropped axes to // shift the crop in each dimension accordingly. // Note: standard dimensions are N,C,H,W so the default is a spatial crop, // and `axis` may be negative to index from the end (e.g., -1 for the last // axis). optional int32 axis = 1 [ default = 2 ]; repeated uint32 offset = 2; } message DataParameter { enum DB { LEVELDB = 0; LMDB = 1; } // Specify the data source. optional string source = 1; // Specify the batch size. optional uint32 batch_size = 4; // The rand_skip variable is for the data layer to skip a few data points // to avoid all asynchronous sgd clients to start at the same point. The skip // point would be set as rand_skip * rand(0,1). Note that rand_skip should not // be larger than the number of keys in the database. // DEPRECATED. Each solver accesses a different subset of the database. optional uint32 rand_skip = 7 [ default = 0 ]; optional DB backend = 8 [ default = LEVELDB ]; // DEPRECATED. See TransformationParameter. For data pre-processing, we can do // simple scaling and subtracting the data mean, if provided. Note that the // mean subtraction is always carried out before scaling. optional float scale = 2 [ default = 1 ]; optional string mean_file = 3; // DEPRECATED. See TransformationParameter. Specify if we would like to // randomly // crop an image. optional uint32 crop_size = 5 [ default = 0 ]; // DEPRECATED. See TransformationParameter. Specify if we want to randomly // mirror // data. optional bool mirror = 6 [ default = false ]; // Force the encoded image to have 3 color channels optional bool force_encoded_color = 9 [ default = false ]; // Prefetch queue (Increase if data feeding bandwidth varies, within the // limit of device memory for GPU training) optional uint32 prefetch = 10 [ default = 4 ]; } message DropoutParameter { optional float dropout_ratio = 1 [ default = 0.5 ]; // dropout ratio } // DummyDataLayer fills any number of arbitrarily shaped blobs with random // (or constant) data generated by "Fillers" (see "message FillerParameter"). message DummyDataParameter { // This layer produces N >= 1 top blobs. DummyDataParameter must specify 1 or // N // shape fields, and 0, 1 or N data_fillers. // // If 0 data_fillers are specified, ConstantFiller with a value of 0 is used. // If 1 data_filler is specified, it is applied to all top blobs. If N are // specified, the ith is applied to the ith top blob. repeated FillerParameter data_filler = 1; repeated BlobShape shape = 6; // 4D dimensions -- deprecated. Use "shape" instead. repeated uint32 num = 2; repeated uint32 channels = 3; repeated uint32 height = 4; repeated uint32 width = 5; } message EltwiseParameter { enum EltwiseOp { PROD = 0; SUM = 1; MAX = 2; } optional EltwiseOp operation = 1 [ default = SUM ]; // element-wise operation repeated float coeff = 2; // blob-wise coefficient for SUM operation // Whether to use an asymptotically slower (for >2 inputs) but stabler method // of computing the gradient for the PROD operation. (No effect for SUM op.) optional bool stable_prod_grad = 3 [ default = true ]; } // Message that stores parameters used by ELULayer message ELUParameter { // Described in: // Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate // Deep Network Learning by Exponential Linear Units (ELUs). arXiv optional float alpha = 1 [ default = 1 ]; } // Message that stores parameters used by EmbedLayer message EmbedParameter { optional uint32 num_output = 1; // The number of outputs for the layer // The input is given as integers to be interpreted as one-hot // vector indices with dimension num_input. Hence num_input should be // 1 greater than the maximum possible input value. optional uint32 input_dim = 2; optional bool bias_term = 3 [ default = true ]; // Whether to use a bias term optional FillerParameter weight_filler = 4; // The filler for the weight optional FillerParameter bias_filler = 5; // The filler for the bias } // Message that stores parameters used by ExpLayer message ExpParameter { // ExpLayer computes outputs y = base ^ (shift + scale * x), for base > 0. // Or if base is set to the default (-1), base is set to e, // so y = exp(shift + scale * x). optional float base = 1 [ default = -1.0 ]; optional float scale = 2 [ default = 1.0 ]; optional float shift = 3 [ default = 0.0 ]; } /// Message that stores parameters used by FlattenLayer message FlattenParameter { // The first axis to flatten: all preceding axes are retained in the output. // May be negative to index from the end (e.g., -1 for the last axis). optional int32 axis = 1 [ default = 1 ]; // The last axis to flatten: all following axes are retained in the output. // May be negative to index from the end (e.g., the default -1 for the last // axis). optional int32 end_axis = 2 [ default = -1 ]; } // Message that stores parameters used by HDF5DataLayer message HDF5DataParameter { // Specify the data source. optional string source = 1; // Specify the batch size. optional uint32 batch_size = 2; // Specify whether to shuffle the data. // If shuffle == true, the ordering of the HDF5 files is shuffled, // and the ordering of data within any given HDF5 file is shuffled, // but data between different files are not interleaved; all of a file's // data are output (in a random order) before moving onto another file. optional bool shuffle = 3 [ default = false ]; } message HDF5OutputParameter { optional string file_name = 1; } message HingeLossParameter { enum Norm { L1 = 1; L2 = 2; } // Specify the Norm to use L1 or L2 optional Norm norm = 1 [ default = L1 ]; } message ImageDataParameter { // Specify the data source. optional string source = 1; // Specify the batch size. optional uint32 batch_size = 4 [ default = 1 ]; // The rand_skip variable is for the data layer to skip a few data points // to avoid all asynchronous sgd clients to start at the same point. The skip // point would be set as rand_skip * rand(0,1). Note that rand_skip should not // be larger than the number of keys in the database. optional uint32 rand_skip = 7 [ default = 0 ]; // Whether or not ImageLayer should shuffle the list of files at every epoch. optional bool shuffle = 8 [ default = false ]; // It will also resize images if new_height or new_width are not zero. optional uint32 new_height = 9 [ default = 0 ]; optional uint32 new_width = 10 [ default = 0 ]; // Specify if the images are color or gray optional bool is_color = 11 [ default = true ]; // DEPRECATED. See TransformationParameter. For data pre-processing, we can do // simple scaling and subtracting the data mean, if provided. Note that the // mean subtraction is always carried out before scaling. optional float scale = 2 [ default = 1 ]; optional string mean_file = 3; // DEPRECATED. See TransformationParameter. Specify if we would like to // randomly // crop an image. optional uint32 crop_size = 5 [ default = 0 ]; // DEPRECATED. See TransformationParameter. Specify if we want to randomly // mirror // data. optional bool mirror = 6 [ default = false ]; optional string root_folder = 12 [ default = "" ]; } message InfogainLossParameter { // Specify the infogain matrix source. optional string source = 1; optional int32 axis = 2 [ default = 1 ]; // axis of prob } message InnerProductParameter { optional uint32 num_output = 1; // The number of outputs for the layer optional bool bias_term = 2 [ default = true ]; // whether to have bias terms optional FillerParameter weight_filler = 3; // The filler for the weight optional FillerParameter bias_filler = 4; // The filler for the bias // The first axis to be lumped into a single inner product computation; // all preceding axes are retained in the output. // May be negative to index from the end (e.g., -1 for the last axis). optional int32 axis = 5 [ default = 1 ]; // Specify whether to transpose the weight matrix or not. // If transpose == true, any operations will be performed on the transpose // of the weight matrix. The weight matrix itself is not going to be // transposed // but rather the transfer flag of operations will be toggled accordingly. optional bool transpose = 6 [ default = false ]; } message InputParameter { // This layer produces N >= 1 top blob(s) to be assigned manually. // Define N shapes to set a shape for each top. // Define 1 shape to set the same shape for every top. // Define no shape to defer to reshaping manually. repeated BlobShape shape = 1; } // Message that stores parameters used by LogLayer message LogParameter { // LogLayer computes outputs y = log_base(shift + scale * x), for base > 0. // Or if base is set to the default (-1), base is set to e, // so y = ln(shift + scale * x) = log_e(shift + scale * x) optional float base = 1 [ default = -1.0 ]; optional float scale = 2 [ default = 1.0 ]; optional float shift = 3 [ default = 0.0 ]; } // Message that stores parameters used by LRNLayer message LRNParameter { optional uint32 local_size = 1 [ default = 5 ]; optional float alpha = 2 [ default = 1. ]; optional float beta = 3 [ default = 0.75 ]; enum NormRegion { ACROSS_CHANNELS = 0; WITHIN_CHANNEL = 1; } optional NormRegion norm_region = 4 [ default = ACROSS_CHANNELS ]; optional float k = 5 [ default = 1. ]; enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2; } optional Engine engine = 6 [ default = DEFAULT ]; } message MemoryDataParameter { optional uint32 batch_size = 1; optional uint32 channels = 2; optional uint32 height = 3; optional uint32 width = 4; } message MVNParameter { // This parameter can be set to false to normalize mean only optional bool normalize_variance = 1 [ default = true ]; // This parameter can be set to true to perform DNN-like MVN optional bool across_channels = 2 [ default = false ]; // Epsilon for not dividing by zero while normalizing variance optional float eps = 3 [ default = 1e-9 ]; } message ParameterParameter { optional BlobShape shape = 1; } message PoolingParameter { enum PoolMethod { MAX = 0; AVE = 1; STOCHASTIC = 2; } optional PoolMethod pool = 1 [ default = MAX ]; // The pooling method // Pad, kernel size, and stride are all given as a single value for equal // dimensions in height and width or as Y, X pairs. optional uint32 pad = 4 [ default = 0 ]; // The padding size (equal in Y, X) optional uint32 pad_h = 9 [ default = 0 ]; // The padding height optional uint32 pad_w = 10 [ default = 0 ]; // The padding width optional uint32 kernel_size = 2; // The kernel size (square) optional uint32 kernel_h = 5; // The kernel height optional uint32 kernel_w = 6; // The kernel width optional uint32 stride = 3 [ default = 1 ]; // The stride (equal in Y, X) optional uint32 stride_h = 7; // The stride height optional uint32 stride_w = 8; // The stride width enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2; } optional Engine engine = 11 [ default = DEFAULT ]; // If global_pooling then it will pool over the size of the bottom by doing // kernel_h = bottom->height and kernel_w = bottom->width optional bool global_pooling = 12 [ default = false ]; } message PowerParameter { // PowerLayer computes outputs y = (shift + scale * x) ^ power. optional float power = 1 [ default = 1.0 ]; optional float scale = 2 [ default = 1.0 ]; optional float shift = 3 [ default = 0.0 ]; } message PythonParameter { optional string module = 1; optional string layer = 2; // This value is set to the attribute `param_str` of the `PythonLayer` object // in Python before calling the `setup()` method. This could be a number, // string, dictionary in Python dict format, JSON, etc. You may parse this // string in `setup` method and use it in `forward` and `backward`. optional string param_str = 3 [ default = '']; // DEPRECATED optional bool share_in_parallel = 4 [ default = false ]; } // Message that stores parameters used by RecurrentLayer message RecurrentParameter { // The dimension of the output (and usually hidden state) representation -- // must be explicitly set to non-zero. optional uint32 num_output = 1 [ default = 0 ]; optional FillerParameter weight_filler = 2; // The filler for the weight optional FillerParameter bias_filler = 3; // The filler for the bias // Whether to enable displaying debug_info in the unrolled recurrent net. optional bool debug_info = 4 [ default = false ]; // Whether to add as additional inputs (bottoms) the initial hidden state // blobs, and add as additional outputs (tops) the final timestep hidden state // blobs. The number of additional bottom/top blobs required depends on the // recurrent architecture -- e.g., 1 for RNNs, 2 for LSTMs. optional bool expose_hidden = 5 [ default = false ]; } // Message that stores parameters used by ReductionLayer message ReductionParameter { enum ReductionOp { SUM = 1; ASUM = 2; SUMSQ = 3; MEAN = 4; } optional ReductionOp operation = 1 [ default = SUM ]; // reduction operation // The first axis to reduce to a scalar -- may be negative to index from the // end (e.g., -1 for the last axis). // (Currently, only reduction along ALL "tail" axes is supported; reduction // of axis M through N, where N < num_axes - 1, is unsupported.) // Suppose we have an n-axis bottom Blob with shape: // (d0, d1, d2, ..., d(m-1), dm, d(m+1), ..., d(n-1)). // If axis == m, the output Blob will have shape // (d0, d1, d2, ..., d(m-1)), // and the ReductionOp operation is performed (d0 * d1 * d2 * ... * d(m-1)) // times, each including (dm * d(m+1) * ... * d(n-1)) individual data. // If axis == 0 (the default), the output Blob always has the empty shape // (count 1), performing reduction across the entire input -- // often useful for creating new loss functions. optional int32 axis = 2 [ default = 0 ]; optional float coeff = 3 [ default = 1.0 ]; // coefficient for output } // Message that stores parameters used by ReLULayer message ReLUParameter { // Allow non-zero slope for negative inputs to speed up optimization // Described in: // Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities // improve neural network acoustic models. In ICML Workshop on Deep Learning // for Audio, Speech, and Language Processing. optional float negative_slope = 1 [ default = 0 ]; enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2; } optional Engine engine = 2 [ default = DEFAULT ]; } message ReshapeParameter { // Specify the output dimensions. If some of the dimensions are set to 0, // the corresponding dimension from the bottom layer is used (unchanged). // Exactly one dimension may be set to -1, in which case its value is // inferred from the count of the bottom blob and the remaining dimensions. // For example, suppose we want to reshape a 2D blob "input" with shape 2 x 8: // // layer { // type: "Reshape" bottom: "input" top: "output" // reshape_param { ... } // } // // If "input" is 2D with shape 2 x 8, then the following reshape_param // specifications are all equivalent, producing a 3D blob "output" with shape // 2 x 2 x 4: // // reshape_param { shape { dim: 2 dim: 2 dim: 4 } } // reshape_param { shape { dim: 0 dim: 2 dim: 4 } } // reshape_param { shape { dim: 0 dim: 2 dim: -1 } } // reshape_param { shape { dim: 0 dim:-1 dim: 4 } } // optional BlobShape shape = 1; // axis and num_axes control the portion of the bottom blob's shape that are // replaced by (included in) the reshape. By default (axis == 0 and // num_axes == -1), the entire bottom blob shape is included in the reshape, // and hence the shape field must specify the entire output shape. // // axis may be non-zero to retain some portion of the beginning of the input // shape (and may be negative to index from the end; e.g., -1 to begin the // reshape after the last axis, including nothing in the reshape, // -2 to include only the last axis, etc.). // // For example, suppose "input" is a 2D blob with shape 2 x 8. // Then the following ReshapeLayer specifications are all equivalent, // producing a blob "output" with shape 2 x 2 x 4: // // reshape_param { shape { dim: 2 dim: 2 dim: 4 } } // reshape_param { shape { dim: 2 dim: 4 } axis: 1 } // reshape_param { shape { dim: 2 dim: 4 } axis: -3 } // // num_axes specifies the extent of the reshape. // If num_axes >= 0 (and axis >= 0), the reshape will be performed only on // input axes in the range [axis, axis+num_axes]. // num_axes may also be -1, the default, to include all remaining axes // (starting from axis). // // For example, suppose "input" is a 2D blob with shape 2 x 8. // Then the following ReshapeLayer specifications are equivalent, // producing a blob "output" with shape 1 x 2 x 8. // // reshape_param { shape { dim: 1 dim: 2 dim: 8 } } // reshape_param { shape { dim: 1 dim: 2 } num_axes: 1 } // reshape_param { shape { dim: 1 } num_axes: 0 } // // On the other hand, these would produce output blob shape 2 x 1 x 8: // // reshape_param { shape { dim: 2 dim: 1 dim: 8 } } // reshape_param { shape { dim: 1 } axis: 1 num_axes: 0 } // optional int32 axis = 2 [ default = 0 ]; optional int32 num_axes = 3 [ default = -1 ]; } message ScaleParameter { // The first axis of bottom[0] (the first input Blob) along which to apply // bottom[1] (the second input Blob). May be negative to index from the end // (e.g., -1 for the last axis). // // For example, if bottom[0] is 4D with shape 100x3x40x60, the output // top[0] will have the same shape, and bottom[1] may have any of the // following shapes (for the given value of axis): // (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60 // (axis == 1 == -3) 3; 3x40; 3x40x60 // (axis == 2 == -2) 40; 40x60 // (axis == 3 == -1) 60 // Furthermore, bottom[1] may have the empty shape (regardless of the value of // "axis") -- a scalar multiplier. optional int32 axis = 1 [ default = 1 ]; // (num_axes is ignored unless just one bottom is given and the scale is // a learned parameter of the layer. Otherwise, num_axes is determined by the // number of axes by the second bottom.) // The number of axes of the input (bottom[0]) covered by the scale // parameter, or -1 to cover all axes of bottom[0] starting from `axis`. // Set num_axes := 0, to multiply with a zero-axis Blob: a scalar. optional int32 num_axes = 2 [ default = 1 ]; // (filler is ignored unless just one bottom is given and the scale is // a learned parameter of the layer.) // The initialization for the learned scale parameter. // Default is the unit (1) initialization, resulting in the ScaleLayer // initially performing the identity operation. optional FillerParameter filler = 3; // Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but // may be more efficient). Initialized with bias_filler (defaults to 0). optional bool bias_term = 4 [ default = false ]; optional FillerParameter bias_filler = 5; } message SigmoidParameter { enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2; } optional Engine engine = 1 [ default = DEFAULT ]; } message SliceParameter { // The axis along which to slice -- may be negative to index from the end // (e.g., -1 for the last axis). // By default, SliceLayer concatenates blobs along the "channels" axis (1). optional int32 axis = 3 [ default = 1 ]; repeated uint32 slice_point = 2; // DEPRECATED: alias for "axis" -- does not support negative indexing. optional uint32 slice_dim = 1 [ default = 1 ]; } // Message that stores parameters used by SoftmaxLayer, SoftmaxWithLossLayer message SoftmaxParameter { enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2; } optional Engine engine = 1 [ default = DEFAULT ]; // The axis along which to perform the softmax -- may be negative to index // from the end (e.g., -1 for the last axis). // Any other axes will be evaluated as independent softmaxes. optional int32 axis = 2 [ default = 1 ]; } message TanHParameter { enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2; } optional Engine engine = 1 [ default = DEFAULT ]; } // Message that stores parameters used by TileLayer message TileParameter { // The index of the axis to tile. optional int32 axis = 1 [ default = 1 ]; // The number of copies (tiles) of the blob to output. optional int32 tiles = 2; } // Message that stores parameters used by ThresholdLayer message ThresholdParameter { optional float threshold = 1 [ default = 0 ]; // Strictly positive values } message WindowDataParameter { // Specify the data source. optional string source = 1; // For data pre-processing, we can do simple scaling and subtracting the // data mean, if provided. Note that the mean subtraction is always carried // out before scaling. optional float scale = 2 [ default = 1 ]; optional string mean_file = 3; // Specify the batch size. optional uint32 batch_size = 4; // Specify if we would like to randomly crop an image. optional uint32 crop_size = 5 [ default = 0 ]; // Specify if we want to randomly mirror data. optional bool mirror = 6 [ default = false ]; // Foreground (object) overlap threshold optional float fg_threshold = 7 [ default = 0.5 ]; // Background (non-object) overlap threshold optional float bg_threshold = 8 [ default = 0.5 ]; // Fraction of batch that should be foreground objects optional float fg_fraction = 9 [ default = 0.25 ]; // Amount of contextual padding to add around a window // (used only by the window_data_layer) optional uint32 context_pad = 10 [ default = 0 ]; // Mode for cropping out a detection window // warp: cropped window is warped to a fixed size and aspect ratio // square: the tightest square around the window is cropped optional string crop_mode = 11 [ default = "warp" ]; // cache_images: will load all images in memory for faster access optional bool cache_images = 12 [ default = false ]; // append root_folder to locate images optional string root_folder = 13 [ default = "" ]; } message SPPParameter { enum PoolMethod { MAX = 0; AVE = 1; STOCHASTIC = 2; } optional uint32 pyramid_height = 1; optional PoolMethod pool = 2 [ default = MAX ]; // The pooling method enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2; } optional Engine engine = 6 [ default = DEFAULT ]; } // DEPRECATED: use LayerParameter. message V1LayerParameter { repeated string bottom = 2; repeated string top = 3; optional string name = 4; repeated NetStateRule include = 32; repeated NetStateRule exclude = 33; enum LayerType { NONE = 0; ABSVAL = 35; ACCURACY = 1; ARGMAX = 30; BNLL = 2; CONCAT = 3; CONTRASTIVE_LOSS = 37; CONVOLUTION = 4; DATA = 5; DECONVOLUTION = 39; DROPOUT = 6; DUMMY_DATA = 32; EUCLIDEAN_LOSS = 7; ELTWISE = 25; EXP = 38; FLATTEN = 8; HDF5_DATA = 9; HDF5_OUTPUT = 10; HINGE_LOSS = 28; IM2COL = 11; IMAGE_DATA = 12; INFOGAIN_LOSS = 13; INNER_PRODUCT = 14; LRN = 15; MEMORY_DATA = 29; MULTINOMIAL_LOGISTIC_LOSS = 16; MVN = 34; POOLING = 17; POWER = 26; RELU = 18; SIGMOID = 19; SIGMOID_CROSS_ENTROPY_LOSS = 27; SILENCE = 36; SOFTMAX = 20; SOFTMAX_LOSS = 21; SPLIT = 22; SLICE = 33; TANH = 23; WINDOW_DATA = 24; THRESHOLD = 31; } optional LayerType type = 5; repeated BlobProto blobs = 6; repeated string param = 1001; repeated DimCheckMode blob_share_mode = 1002; enum DimCheckMode { STRICT = 0; PERMISSIVE = 1; } repeated float blobs_lr = 7; repeated float weight_decay = 8; repeated float loss_weight = 35; optional AccuracyParameter accuracy_param = 27; optional ArgMaxParameter argmax_param = 23; optional ConcatParameter concat_param = 9; optional ContrastiveLossParameter contrastive_loss_param = 40; optional ConvolutionParameter convolution_param = 10; optional DataParameter data_param = 11; optional DropoutParameter dropout_param = 12; optional DummyDataParameter dummy_data_param = 26; optional EltwiseParameter eltwise_param = 24; optional ExpParameter exp_param = 41; optional HDF5DataParameter hdf5_data_param = 13; optional HDF5OutputParameter hdf5_output_param = 14; optional HingeLossParameter hinge_loss_param = 29; optional ImageDataParameter image_data_param = 15; optional InfogainLossParameter infogain_loss_param = 16; optional InnerProductParameter inner_product_param = 17; optional LRNParameter lrn_param = 18; optional MemoryDataParameter memory_data_param = 22; optional MVNParameter mvn_param = 34; optional PoolingParameter pooling_param = 19; optional PowerParameter power_param = 21; optional ReLUParameter relu_param = 30; optional SigmoidParameter sigmoid_param = 38; optional SoftmaxParameter softmax_param = 39; optional SliceParameter slice_param = 31; optional TanHParameter tanh_param = 37; optional ThresholdParameter threshold_param = 25; optional WindowDataParameter window_data_param = 20; optional TransformationParameter transform_param = 36; optional LossParameter loss_param = 42; optional V0LayerParameter layer = 1; } // DEPRECATED: V0LayerParameter is the old way of specifying layer parameters // in Caffe. We keep this message type around for legacy support. message V0LayerParameter { optional string name = 1; // the layer name optional string type = 2; // the string to specify the layer type // Parameters to specify layers with inner products. optional uint32 num_output = 3; // The number of outputs for the layer optional bool biasterm = 4 [ default = true ]; // whether to have bias terms optional FillerParameter weight_filler = 5; // The filler for the weight optional FillerParameter bias_filler = 6; // The filler for the bias optional uint32 pad = 7 [ default = 0 ]; // The padding size optional uint32 kernelsize = 8; // The kernel size optional uint32 group = 9 [ default = 1 ]; // The group size for group conv optional uint32 stride = 10 [ default = 1 ]; // The stride enum PoolMethod { MAX = 0; AVE = 1; STOCHASTIC = 2; } optional PoolMethod pool = 11 [ default = MAX ]; // The pooling method optional float dropout_ratio = 12 [ default = 0.5 ]; // dropout ratio optional uint32 local_size = 13 [ default = 5 ]; // for local response norm optional float alpha = 14 [ default = 1. ]; // for local response norm optional float beta = 15 [ default = 0.75 ]; // for local response norm optional float k = 22 [ default = 1. ]; // For data layers, specify the data source optional string source = 16; // For data pre-processing, we can do simple scaling and subtracting the // data mean, if provided. Note that the mean subtraction is always carried // out before scaling. optional float scale = 17 [ default = 1 ]; optional string meanfile = 18; // For data layers, specify the batch size. optional uint32 batchsize = 19; // For data layers, specify if we would like to randomly crop an image. optional uint32 cropsize = 20 [ default = 0 ]; // For data layers, specify if we want to randomly mirror data. optional bool mirror = 21 [ default = false ]; // The blobs containing the numeric parameters of the layer repeated BlobProto blobs = 50; // The ratio that is multiplied on the global learning rate. If you want to // set the learning ratio for one blob, you need to set it for all blobs. repeated float blobs_lr = 51; // The weight decay that is multiplied on the global weight decay. repeated float weight_decay = 52; // The rand_skip variable is for the data layer to skip a few data points // to avoid all asynchronous sgd clients to start at the same point. The skip // point would be set as rand_skip * rand(0,1). Note that rand_skip should not // be larger than the number of keys in the database. optional uint32 rand_skip = 53 [ default = 0 ]; // Fields related to detection (det_*) // foreground (object) overlap threshold optional float det_fg_threshold = 54 [ default = 0.5 ]; // background (non-object) overlap threshold optional float det_bg_threshold = 55 [ default = 0.5 ]; // Fraction of batch that should be foreground objects optional float det_fg_fraction = 56 [ default = 0.25 ]; // optional bool OBSOLETE_can_clobber = 57 [default = true]; // Amount of contextual padding to add around a window // (used only by the window_data_layer) optional uint32 det_context_pad = 58 [ default = 0 ]; // Mode for cropping out a detection window // warp: cropped window is warped to a fixed size and aspect ratio // square: the tightest square around the window is cropped optional string det_crop_mode = 59 [ default = "warp" ]; // For ReshapeLayer, one needs to specify the new dimensions. optional int32 new_num = 60 [ default = 0 ]; optional int32 new_channels = 61 [ default = 0 ]; optional int32 new_height = 62 [ default = 0 ]; optional int32 new_width = 63 [ default = 0 ]; // Whether or not ImageLayer should shuffle the list of files at every epoch. // It will also resize images if new_height or new_width are not zero. optional bool shuffle_images = 64 [ default = false ]; // For ConcatLayer, one needs to specify the dimension for concatenation, and // the other dimensions must be the same for all the bottom blobs. // By default it will concatenate blobs along the channels dimension. optional uint32 concat_dim = 65 [ default = 1 ]; optional HDF5OutputParameter hdf5_output_param = 1001; } message PReLUParameter { // Parametric ReLU described in K. He et al, Delving Deep into Rectifiers: // Surpassing Human-Level Performance on ImageNet Classification, 2015. // Initial value of a_i. Default is a_i=0.25 for all i. optional FillerParameter filler = 1; // Whether or not slope parameters are shared across channels. optional bool channel_shared = 2 [ default = false ]; }