import sys import os import math import numpy as np def import_fluid(): import paddle.fluid as fluid return fluid def layer(op): '''Decorator for composable network layers.''' def layer_decorated(self, *args, **kwargs): # Automatically set a name if not provided. name = kwargs.setdefault('name', self.get_unique_name(op.__name__)) # Figure out the layer inputs. if len(self.terminals) == 0: raise RuntimeError('No input variables found for layer %s.' % name) elif len(self.terminals) == 1: layer_input = self.terminals[0] else: layer_input = list(self.terminals) self.layer_reverse_trace[name] = layer_input # Perform the operation and get the output. layer_output = op(self, layer_input, *args, **kwargs) # Add to layer LUT. self.layers[name] = layer_output self.var2name[layer_output.name] = (name, layer_output) # This output is now the input for the next layer. self.feed(layer_output) # Return self for chained calls. return self return layer_decorated class Network(object): def __init__(self, inputs, trainable=True): # The input nodes for this network self.inputs = inputs # The current list of terminal nodes self.terminals = [] # Mapping from layer names to layers self.layers = dict(inputs) # If true, the resulting variables are set as trainable self.trainable = trainable # Switch variable for dropout self.paddle_env = None self.output_names = [] self.name_trace = None self.layer_reverse_trace = {} self.var2name = {} self.setup() def setup(self): '''Construct the network. ''' raise NotImplementedError('Must be implemented by the subclass.') def locate_ancestor(self, v, which=[0], ancestor_level=1): """ find a ancestor for a node 'v' which is a fluid variable """ ancestor = None which = which * ancestor_level name = self.var2name[v.name][0] for i in range(ancestor_level): v = self.layer_reverse_trace[name] if type(v) is list: ancestor = self.var2name[v[which[i]].name] else: ancestor = self.var2name[v.name] name = ancestor[0] return ancestor def load(self, data_path, exe=None, place=None, ignore_missing=False): '''Load network weights. data_path: The path to the numpy-serialized network weights ignore_missing: If true, serialized weights for missing layers are ignored. ''' fluid = import_fluid() #load fluid mode directly if os.path.isdir(data_path): assert (exe is not None), \ 'must provide a executor to load fluid model' fluid.io.load_persistables(executor=exe, dirname=data_path) return True #load model from a npy file if exe is None or place is None: if self.paddle_env is None: place = fluid.CPUPlace() exe = fluid.Executor(place) self.paddle_env = {'place': place, 'exe': exe} exe = exe.run(fluid.default_startup_program()) else: place = self.paddle_env['place'] exe = self.paddle_env['exe'] data_dict = np.load(data_path).item() for op_name in data_dict: if op_name == 'caffe2fluid_name_trace': self.name_trace = data_dict[op_name] continue layer = self.layers[op_name] for param_name, data in data_dict[op_name].iteritems(): try: name = '%s_%s' % (op_name, param_name) v = fluid.global_scope().find_var(name) w = v.get_tensor() w.set(data.reshape(w.shape()), place) except ValueError: if not ignore_missing: raise return True def feed(self, *args): '''Set the input(s) for the next operation by replacing the terminal nodes. The arguments can be either layer names or the actual layers. ''' assert len(args) != 0 self.terminals = [] for fed_layer in args: if isinstance(fed_layer, basestring): try: fed_layer = self.layers[fed_layer] except KeyError: raise KeyError('Unknown layer name fed: %s' % fed_layer) self.terminals.append(fed_layer) return self def get_output(self): '''Returns the current network output.''' return self.terminals[-1] def get_unique_name(self, prefix): '''Returns an index-suffixed unique name for the given prefix. This is used for auto-generating layer names based on the type-prefix. ''' ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1 return '%s_%d' % (prefix, ident) def get_unique_output_name(self, prefix, layertype): '''Returns an index-suffixed unique name for the given prefix. This is used for auto-generating layer names based on the type-prefix. ''' ident = sum(t.startswith(prefix) for t in self.output_names) + 1 unique_name = '%s.%s.output.%d' % (prefix, layertype, ident) self.output_names.append(unique_name) return unique_name @layer def conv(self, input, k_h, k_w, c_o, s_h, s_w, name, relu=True, relu_negative_slope=0.0, padding=None, dilation=1, group=1, biased=True): if padding is None: padding = [0, 0] # Get the number of channels in the input c_i, h_i, w_i = input.shape[1:] # Verify that the grouping parameter is valid assert c_i % group == 0 assert c_o % group == 0 fluid = import_fluid() prefix = name + '_' leaky_relu = False act = 'relu' if relu is False: act = None elif relu_negative_slope != 0.0: leaky_relu = True act = None output = fluid.layers.conv2d( name=self.get_unique_output_name(name, 'conv2d'), input=input, filter_size=[k_h, k_w], num_filters=c_o, stride=[s_h, s_w], padding=padding, dilation=dilation, groups=group, param_attr=fluid.ParamAttr(name=prefix + "weights"), bias_attr=fluid.ParamAttr(name=prefix + "biases"), act=act) if leaky_relu: output = fluid.layers.leaky_relu(output, alpha=relu_negative_slope) return output @layer def deconv(self, input, k_h, k_w, c_o, s_h, s_w, name, relu=True, relu_negative_slope=0.0, padding=None, dilation=1, biased=True): if padding is None: padding = [0, 0] # Get the number of channels in the input c_i, h_i, w_i = input.shape[1:] fluid = import_fluid() prefix = name + '_' leaky_relu = False act = 'relu' if relu is False: act = None elif relu_negative_slope != 0.0: leaky_relu = True act = None p_h = padding[0] p_w = padding[1] h_o = (h_i - 1) * s_h - 2 * p_h + dilation * (k_h - 1) + 1 w_o = (w_i - 1) * s_w - 2 * p_w + dilation * (k_w - 1) + 1 output = fluid.layers.conv2d_transpose( name=self.get_unique_output_name(name, 'conv2d_transpose'), input=input, num_filters=c_o, output_size=[h_o, w_o], filter_size=[k_h, k_w], padding=padding, stride=[s_h, s_w], dilation=dilation, param_attr=fluid.ParamAttr(name=prefix + "weights"), bias_attr=fluid.ParamAttr(name=prefix + "biases"), act=act) if leaky_relu: output = fluid.layers.leaky_relu(output, alpha=relu_negative_slope) return output @layer def relu(self, input, name): fluid = import_fluid() output = fluid.layers.relu(input) return output @layer def prelu(self, input, channel_shared, name): fluid = import_fluid() if channel_shared: mode = 'all' else: mode = 'channel' prefix = name + '_' output = fluid.layers.prelu( input, mode=mode, param_attr=fluid.ParamAttr(name=prefix + 'negslope')) return output def pool(self, pool_type, input, k_h, k_w, s_h, s_w, ceil_mode, padding, name, exclusive=True): # Get the number of channels in the input in_hw = input.shape[2:] k_hw = [k_h, k_w] s_hw = [s_h, s_w] fluid = import_fluid() output = fluid.layers.pool2d( name=name, input=input, pool_size=k_hw, pool_stride=s_hw, pool_padding=padding, ceil_mode=ceil_mode, pool_type=pool_type, exclusive=exclusive) return output @layer def max_pool(self, input, k_h, k_w, s_h, s_w, ceil_mode, padding=[0, 0], name=None): return self.pool( 'max', input, k_h, k_w, s_h, s_w, ceil_mode, padding, name=self.get_unique_output_name(name, 'max_pool')) @layer def avg_pool(self, input, k_h, k_w, s_h, s_w, ceil_mode, padding=[0, 0], name=None): return self.pool( 'avg', input, k_h, k_w, s_h, s_w, ceil_mode, padding, name=self.get_unique_output_name(name, 'avg_pool'), exclusive=False) @layer def sigmoid(self, input, name): fluid = import_fluid() return fluid.layers.sigmoid( input, name=self.get_unique_output_name(name, 'sigmoid')) @layer def tanh(self, input, name): fluid = import_fluid() return fluid.layers.tanh( input, name=self.get_unique_output_name(name, 'tanh')) @layer def lrn(self, input, radius, alpha, beta, name, bias=1.0): fluid = import_fluid() output = fluid.layers.lrn(input=input, n=radius, k=bias, alpha=alpha, beta=beta, name=self.get_unique_output_name(name, 'lrn')) return output @layer def concat(self, inputs, axis, name): fluid = import_fluid() output = fluid.layers.concat( input=inputs, axis=axis, name=self.get_unique_output_name(name, 'concat')) return output @layer def add(self, inputs, name): fluid = import_fluid() output = inputs[0] for i in inputs[1:]: output = fluid.layers.elementwise_add( x=output, y=i, name=self.get_unique_output_name(name, 'add')) return output @layer def max(self, inputs, name): fluid = import_fluid() output = inputs[0] for i in inputs[1:]: output = fluid.layers.elementwise_max( x=output, y=i, name=self.get_unique_output_name(name, 'max')) return output @layer def multiply(self, inputs, name): fluid = import_fluid() output = inputs[0] for i in inputs[1:]: output = fluid.layers.elementwise_mul( x=output, y=i, name=self.get_unique_output_name(name, 'mul')) return output @layer def fc(self, input, num_out, name, relu=True, act=None): fluid = import_fluid() if act is None: act = 'relu' if relu is True else None prefix = name + '_' output = fluid.layers.fc( name=self.get_unique_output_name(name, 'fc'), input=input, size=num_out, act=act, param_attr=fluid.ParamAttr(name=prefix + 'weights'), bias_attr=fluid.ParamAttr(name=prefix + 'biases')) return output @layer def softmax(self, input, axis=2, name=None): fluid = import_fluid() shape = input.shape dims = len(shape) axis = axis + dims if axis < 0 else axis need_transpose = False if axis + 1 != dims: need_transpose = True if need_transpose: order = range(dims) order.remove(axis) order.append(axis) input = fluid.layers.transpose( input, perm=order, name=self.get_unique_output_name(name, 'transpose')) output = fluid.layers.softmax( input, name=self.get_unique_output_name(name, 'softmax')) if need_transpose: order = range(len(shape)) order[axis] = dims - 1 order[-1] = axis output = fluid.layers.transpose( output, perm=order, name=self.get_unique_output_name(name, 'transpose')) return output @layer def batch_normalization(self, input, name, scale_offset=True, eps=1e-5, relu=False, relu_negative_slope=0.0): # NOTE: Currently, only inference is supported fluid = import_fluid() prefix = name + '_' param_attr = None if scale_offset is False else fluid.ParamAttr( name=prefix + 'scale') bias_attr = None if scale_offset is False else fluid.ParamAttr( name=prefix + 'offset') mean_name = prefix + 'mean' variance_name = prefix + 'variance' leaky_relu = False act = 'relu' if relu is False: act = None elif relu_negative_slope != 0.0: leaky_relu = True act = None output = fluid.layers.batch_norm( name=self.get_unique_output_name(name, 'batch_norm'), input=input, is_test=True, param_attr=param_attr, bias_attr=bias_attr, moving_mean_name=mean_name, moving_variance_name=variance_name, epsilon=eps, act=act) if leaky_relu: output = fluid.layers.leaky_relu(output, alpha=relu_negative_slope) return output @layer def dropout(self, input, drop_prob, name, is_test=True): fluid = import_fluid() if is_test: output = input else: output = fluid.layers.dropout( input, dropout_prob=drop_prob, is_test=is_test, name=self.get_unique_output_name(name, 'dropout')) return output @layer def scale(self, input, axis=1, num_axes=1, name=None): fluid = import_fluid() assert num_axes == 1, "layer scale not support this num_axes[%d] now" % ( num_axes) prefix = name + '_' scale_shape = input.shape[axis:axis + num_axes] param_attr = fluid.ParamAttr(name=prefix + 'scale') scale_param = fluid.layers.create_parameter( shape=scale_shape, dtype=input.dtype, name=name, attr=param_attr, is_bias=True, default_initializer=fluid.initializer.Constant(value=1.0)) offset_attr = fluid.ParamAttr(name=prefix + 'offset') offset_param = fluid.layers.create_parameter( shape=scale_shape, dtype=input.dtype, name=name, attr=offset_attr, is_bias=True, default_initializer=fluid.initializer.Constant(value=0.0)) output = fluid.layers.elementwise_mul( input, scale_param, axis=axis, name=self.get_unique_output_name(name, 'scale_mul')) output = fluid.layers.elementwise_add( output, offset_param, axis=axis, name=self.get_unique_output_name(name, 'scale_add')) return output def custom_layer_factory(self): """ get a custom layer maker provided by subclass """ raise NotImplementedError( '[custom_layer_factory] must be implemented by the subclass.') @layer def custom_layer(self, inputs, kind, name, *args, **kwargs): """ make custom layer """ #FIX ME: # there is a trick for different API between caffe and paddle if kind == "DetectionOutput": conf_var = inputs[1] real_conf_var = self.locate_ancestor(conf_var, ancestor_level=2) inputs[1] = real_conf_var[1] name = self.get_unique_output_name(name, kind) layer_factory = self.custom_layer_factory() return layer_factory(kind, inputs, name, *args, **kwargs)