# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import sys import x2paddle import os import numpy as np import paddle.fluid.core as core import paddle.fluid as fluid import onnx from onnx import helper, onnx_pb from x2paddle.op_mapper.paddle2onnx.opset9.opset import OpSet9 from x2paddle.op_mapper.paddle2onnx.opset10.opset import OpSet10 from x2paddle.op_mapper.paddle2onnx.opset11.opset import OpSet11 class PaddleOpMapper(object): def __init__(self): self.support_opsets = [9, 10, 11] self.default_opset = 10 self.name_counter = dict() self.op_set = None def convert(self, program, save_dir, opset_number=10): self.op_set = self.create_opset(opset_number) weight_nodes = self.op_set.convert_weights(program) op_nodes = list() input_nodes = list() output_nodes = list() unsupported_ops = set() print("Translating PaddlePaddle to ONNX...\n") for block in program.blocks: for i, op in enumerate(block.ops): sys.stdout.write("\rTotal:{}, Current:{} : {} ".format( len(block.ops), i + 1, op.type)) sys.stdout.flush() if not hasattr(self.op_set, op.type): unsupported_ops.add(op.type) continue if len(unsupported_ops) > 0: continue node = getattr(self.op_set, op.type)(op, block) if op.type == 'feed': print(node.name) input_nodes.append(node) elif op.type == 'fetch': output_nodes.append(node) else: if isinstance(node, list): op_nodes = op_nodes + node else: op_nodes.append(node) if len(unsupported_ops) > 0: print("\nThere's {} ops are not supported yet".format( len(unsupported_ops))) for op in unsupported_ops: print("=========== {} ===========".format(op)) return graph = helper.make_graph( nodes=weight_nodes + op_nodes, name='onnx_model_from_paddle', initializer=[], inputs=input_nodes, outputs=output_nodes) opset_imports = [helper.make_opsetid("", opset_number)] model = helper.make_model( graph, producer_name='X2Paddle', opset_imports=opset_imports) onnx.checker.check_model(model) if not os.path.isdir(save_dir): os.makedirs(save_dir) with open(os.path.join(save_dir, 'x2paddle_model.onnx'), 'wb') as f: f.write(model.SerializeToString()) print("\nTranslated model saved in {}".format( os.path.join(save_dir, 'x2paddle_model.onnx'))) def create_opset(self, opset_number): run_opset = self.default_opset opset = '' if opset_number in self.support_opsets: run_opset = opset_number else: for support_opset_number in self.support_opsets: if support_opset_number > opset_number: run_opset = support_opset_number else: break print( 'Now, onnx2paddle support convert onnx model opset_verison {},' 'opset_verison of your onnx model is {}, automatically treated as op_set: {}.' .format(self.support_opsets, opset_number, run_opset)) opset = 'OpSet' + str(run_opset) return eval(opset)()