## tf.nn.conv2d_transpose ### [tf.nn.conv2d_transpose](https://www.tensorflow.org/versions/r1.13/api_docs/python/tf/nn/conv2d_transpose) ``` python tf.nn.conv2d_transpose( value, filter, output_shape, strides, padding='SAME', data_format='NHWC', name=None ) ``` ### [paddle.fluid.layers.conv2d_transpose](http://paddlepaddle.org/documentation/docs/zh/1.4/api_cn/layers_cn.html#paddle.fluid.layers.conv2d_transpose) ``` python paddle.fluid.layers.conv2d_transpose( input, num_filters, output_size=None, filter_size=None, padding=0, stride=1, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, name=None ) ``` ### 功能差异 #### 数据格式 TensorFlow: 默认输入数据格式为`NHWC`,表示`(batch,height, width, in_channels)`, 同时也将`data_format`参数设为`channels_first`,支持`NCHW`格式的数据输入。其中输入、输出、卷积核对应关系如下表所示, | 输入 | 卷积核 | 输出 | |--------------------|-------------------|------------------| |NHWC | (kernel_h, kernel_w, filters_num, in_channels)| (batch, out_h, out_w, filters_num)| |NCHW | (kernel_h, kernel_w, filters_num, in_channels) | (batch, filters_num, out_h, out_w)| PaddlePaddle:只支持输入数据格式为`NCHW`,且**卷积核格式**与TensorFlow不同,其中输入、输出、卷积核对应关系如下表所示, | 输入 | 卷积核 | 输出 | |--------------------|-------------------|------------------| |NCHW | (in_channels, filters_num, kernel_h, kernel_w) | (batch, filters_num, out_h, out_w)| #### Padding机制 TensorFlow: `SAME`和`VALID`两种选项。当为`SAME`时,padding的计算方式如下所示 ```python # 计算在width上的padding size # height上的padding计算方式同理 ceil_size = ceil(input_width / stride_width) pad_size = (ceil_size - 1) * stride_width + filter_width - input_width pad_left = ceil(pad_size / 2) pad_right = pad_size - pad_left ``` PaddlePaddle:`padding`参数表示在输入图像四周padding的size大小 #### 输出大小 TensorFlow:当padding为`SAME`和`VALID`两种情况下,输出大小计算方式如下所示 ```python if padding == 'SAME': output_size = input_size * stride elif padding == 'VALID': output_size = input_size * stride + max(kernel_size - stride, 0) ``` PaddlePaddle: 输出大小计算公式如下,差异主要由于TensorFlow在`conv2d_transpose`的最后还存在**裁剪**步骤,因此可参考示例代码,调用`crop`解决 ```python output_size = (input_size - 1) * stride - 2 * padding + dilation * (kernel - 1) + 1 ``` ### 代码示例 ```python # TensorFlow使用conv2d_transpose # 输入shape: [-1, 20, 20, 3] inputs = tf.placeholder(dtype=tf.float32, shape=[None, 20, 20, 3]) filter = tf.random_uniform(shape=[5, 5, 3, 3], 0.0, 1.0) batch = tf.shape(inputs)[0] # conv2d_transpose输出shape: [-1, 40, 40, 3] result = tf.nn.conv2d_transpose(inputs, filter, output_shape=[batch, 40, 40, 3], strides=[1, 2, 2, 1], padding='SAME') #PaddlePaddle中使用conv2d_transpose # 输入Shape:(None, 3, 20, 20) inputs = fluid.layers.data(dtype='float32', shape=[3, 20, 20], name='inputs) # conv2d_transpose输出shape:[-1, 3, 41, 41] outputs = fluid.layers.conv2d_transpose(pad_inputs, 3, filter_size=[5, 5], padding=[1, 1], stride=[2, 2], bias_attr=False) # 裁剪后结果即为与TensorFlow一致 outputs = fluid.layers.crop(outputs, shape=[-1, 3, 40, 40])