# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from x2paddle.decoder.tf_decoder import TFGraph from x2paddle.core.op_mapper import OpMapper from x2paddle.core.util import * import math import inspect import numpy import sys # compute padding size for SAME mode def get_same_padding(in_size, kernel_size, stride): new_size = int(math.ceil(in_size * 1.0 / stride)) pad_size = (new_size - 1) * stride + kernel_size - in_size if pad_size < 0: pad_size = 0 pad0 = int(pad_size / 2) pad1 = pad_size - pad0 return [pad0, pad1] class TFOpMapperNHWC(OpMapper): directly_map_ops = { 'Relu': ['relu'], 'Relu6': ['relu6'], 'Shape': ['shape'], 'Abs': ['abs'], 'Sigmoid': ['sigmoid'], 'Exp': ['exp'], 'Rsqrt': ['rsqrt'], 'Sqrt': ['sqrt'], 'swish_f32': ['swish'], 'Tanh': ['tanh'], 'Softplus': ['softplus'], 'LeakyRelu': ['leaky_relu', { 'alpha': 'alpha' }], 'Floor': ['floor'], 'Erf': ['erf'] } elementwise_ops = { 'Add': 'elementwise_add', 'AddV2': 'elementwise_add', 'RealDiv': 'elementwise_div', 'Sub': 'elementwise_sub', 'Maximum': 'elementwise_max', 'Minimum': 'elementwise_min', 'LessEqual': 'less_equal', 'Mul': 'elementwise_mul', 'FloorDiv': 'elementwise_floordiv' } def __init__(self, decoder): super(TFOpMapperNHWC, self).__init__() self.decoder = decoder self.graph = decoder.tf_graph self.weights = dict() self.batch_node = None self.omit_nodes = list() self.used_custom_layers = dict() not_placeholder = list() for name in self.graph.input_nodes: if self.graph.get_node( name).layer_type != "Placeholder" and self.graph.get_node( name ).layer_type != "OneShotIterator" and self.graph.get_node( name).layer_type != "IteratorV2": not_placeholder.append(name) for name in not_placeholder: idx = self.graph.input_nodes.index(name) del self.graph.input_nodes[idx] unsupported_ops = set() sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort))) for i, node_name in enumerate(self.graph.topo_sort): sys.stderr.write("\rConverting node {} ... ".format(i + 1)) node = self.graph.get_node(node_name) op = node.layer_type if op in self.directly_map_ops: if len(unsupported_ops) > 0: continue self.directly_map(node) elif op in self.elementwise_ops: if len(unsupported_ops) > 0: continue self.elementwise_map(node) elif hasattr(self, op): if len(unsupported_ops) > 0: continue func = getattr(self, op) try: func(node) except Exception as e: unsupported_ops.add(op) print(e) else: unsupported_ops.add(op) if len(unsupported_ops) > 0: print("========= {} OPs are not supported yet ===========".format( len(unsupported_ops))) for op in unsupported_ops: print("========== {} ============".format(op)) sys.exit(-1) sys.stderr.write("\nDone!\n") def add_omit_nodes(self, in_node_name, out_node_name): in_node = self.graph.get_node(in_node_name) out_node = self.graph.get_node(out_node_name) index = in_node.outputs.index(out_node_name) del in_node.outputs[index] index = out_node.inputs.index(in_node_name) del out_node.inputs[index] self.omit_nodes.append(in_node.layer_name) def directly_map(self, node): assert node.layer_type in self.directly_map_ops op_info = self.directly_map_ops[node.layer_type] input = self.graph.get_node(node.layer.input[0], copy=True) attr = dict() for param in op_info[1:]: tf_param_name = list(param.keys())[0] pd_param_name = list(param.values())[0] tf_param = node.get_attr(tf_param_name) attr[pd_param_name] = tf_param if len(input.out_shapes[0]) == 4 and op_info[0] != 'shape': attr1 = {"perm": [0, 3, 1, 2]} node.fluid_code.add_layer( 'transpose', inputs=input, output=node, param_attr=attr1) input = node node.fluid_code.add_layer( op_info[0], inputs=input, output=node, param_attr=attr) input = node attr2 = {"perm": [0, 2, 3, 1]} node.fluid_code.add_layer( 'transpose', inputs=input, output=node, param_attr=attr2) else: node.fluid_code.add_layer( op_info[0], inputs=input, output=node, param_attr=attr) def elementwise_map(self, node): assert node.layer_type in self.elementwise_ops op_type = self.elementwise_ops[node.layer_type] x = self.graph.get_node(node.layer.input[0], copy=True) y = self.graph.get_node(node.layer.input[1], copy=True) inputs = {"x": x, "y": y} node.fluid_code.add_layer( op_type, inputs=inputs, output=node, param_attr=None) def Placeholder(self, node): shape = node.out_shapes[0] assert len(shape) != 0, "Unknown shape of input nodes[{}].".format( node.layer_name) dtype = node.dtype if shape[0] < 0: self.batch_node = node attr = { 'dtype': string(dtype), 'shape': shape, 'name': string(node.layer_name), 'append_batch_size': False } node.fluid_code.add_layer( "data", inputs=None, output=node, param_attr=attr) def Const(self, node): shape = node.out_shapes[0] dtype = node.dtype value = node.value initializer = "Constant(0.0)" if len(shape) == 0: assert value.size == 1, "Unexpected situation happend" shape = [1] initializer = "Constant({})".format(value) self.weights[node.layer_name] = node.value attr = { 'dtype': string(dtype), 'shape': shape, 'name': string(node.layer_name), 'default_initializer': initializer } node.fluid_code.add_layer( "create_parameter", inputs=None, output=node, param_attr=attr) def Transpose(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) perm = self.graph.get_node(node.layer.input[1], copy=True) assert perm.layer_type == "Const", "Perm of transpose OP should be Const" del self.weights[perm.layer_name.replace('/', '_')] perm.fluid_code.clear() perm = perm.value.tolist() attr = {'perm': perm} node.fluid_code.add_layer( "transpose", inputs=input, output=node, param_attr=attr) def Fill(self, node): dims = self.graph.get_node(node.layer.input[0], copy=True) input_value = self.graph.get_node(node.layer.input[1], copy=True) assert input_value.layer_type == "Const", "Value of fill OP should be Const" self.add_omit_nodes(input_value.layer_name, node.layer_name) input_value = input_value.value input_dtype = string(input_value.dtype) attr = {'value': input_value, 'dtype': input_dtype} node.fluid_code.add_layer( "fill_constant", inputs=dims, output=node, param_attr=attr) def DepthToSpace(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) block_size = node.get_attr("block_size") data_format = node.get_attr("data_format").decode() if data_format == "NHWC": attr = {"perm": [0, 3, 1, 2]} node.fluid_code.add_layer( "transpose", inputs=input, output=input, param_attr=attr) n, h, w, c = input.out_shapes[0] attr = {'shape': [0, block_size * block_size, -1, h, w]} node.fluid_code.add_layer( "reshape", inputs=input, output=input, param_attr=attr) attr = {'perm': [0, 2, 1, 3, 4]} node.fluid_code.add_layer( "transpose", inputs=input, output=input, param_attr=attr) attr = {'shape': [0, c, h, w]} node.fluid_code.add_layer( "reshape", inputs=input, output=input, param_attr=attr) attr = {'upscale_factor': block_size} node.fluid_code.add_layer( "pixel_shuffle", inputs=input, output=node, param_attr=attr) if data_format == "NHWC": attr = {"perm": [0, 2, 3, 1]} node.fluid_code.add_layer( "transpose", inputs=node, output=node, param_attr=attr) def MaxPool(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) k_size = node.get_attr("ksize") strides = node.get_attr("strides") data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() channel_first = data_format == "NCHW" if not channel_first: attr = {"perm": [0, 3, 1, 2]} node.fluid_code.add_layer( "transpose", inputs=input, output=node, param_attr=attr) strides = [strides[i] for i in [0, 3, 1, 2]] k_size = [k_size[i] for i in [0, 3, 1, 2]] input = node attr = { "pool_size": k_size[2:4], "pool_type": string("max"), "pool_stride": strides[2:4], "pool_padding": string(pad_mode) } node.fluid_code.add_layer( "pool2d", inputs=input, output=node, param_attr=attr) if not channel_first: attr = {"perm": [0, 2, 3, 1]} node.fluid_code.add_layer( "transpose", inputs=node, output=node, param_attr=attr) def Conv2D(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) kernel = self.graph.get_node(node.layer.input[1], copy=True) self.add_omit_nodes(kernel.layer_name, node.layer_name) k_size = kernel.out_shapes[0] strides = node.get_attr("strides") dilations = node.get_attr("dilations") data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() channel_first = data_format == "NCHW" if data_format == "NHWC": n, h, w, c = input.out_shapes[0] else: n, c, h, w = input.out_shapes[0] if kernel.layer_type == 'Const': kernel_value = kernel.value kernel_weight_name = kernel.layer_name.replace('/', '_') else: kernel_value = self.decoder.infer_tensor(kernel) if kernel.layer_type == 'Split': kernel_weight_name = "{}_{}_kernel".format(node.layer_name, kernel.layer_name) else: kernel_weight_name = kernel.layer_name.replace('/', '_') self.weights[kernel_weight_name] = numpy.transpose(kernel_value, (3, 2, 0, 1)) if not channel_first: strides = [strides[i] for i in [0, 3, 1, 2]] dilations = [dilations[i] for i in [0, 3, 1, 2]] attr = {"perm": [0, 3, 1, 2]} node.fluid_code.add_layer( "transpose", inputs=input, output=node, param_attr=attr) input = node attr = { "bias_attr": False, "param_attr": string(kernel_weight_name), "num_filters": k_size[3], "filter_size": k_size[0:2], "stride": strides[2:4], "dilation": dilations[2:4], "padding": string(pad_mode) } if hasattr(node, 'dilation') and attr['dilation'] == [1, 1]: if len(node.dilation) == 1: attr['dilation'] = [1, node.dilation[0]] if c == -1: reshape_attr = {"shape": [0, k_size[2], 0, 0]} node.fluid_code.add_layer( "reshape", inputs=input, output=input, param_attr=reshape_attr) node.fluid_code.add_layer( "conv2d", inputs=input, output=node, param_attr=attr) if not channel_first: attr = {"perm": [0, 2, 3, 1]} node.fluid_code.add_layer( "transpose", inputs=node, output=node, param_attr=attr) def BiasAdd(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) bias = self.graph.get_node(node.layer.input[1], copy=True) inputs = {"x": input, "y": bias} node.fluid_code.add_layer( "elementwise_add", inputs=inputs, output=node, param_attr=None) def FusedBatchNorm(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) gamma = self.graph.get_node(node.layer.input[1], copy=True) beta = self.graph.get_node(node.layer.input[2], copy=True) moving_mean = self.graph.get_node(node.layer.input[3], copy=True) moving_var = self.graph.get_node(node.layer.input[4], copy=True) data_format = node.get_attr("data_format").decode() channel_first = data_format == "NCHW" assert gamma.layer_type == "Const" assert beta.layer_type == "Const" assert moving_mean.layer_type == "Const" assert moving_var.layer_type == "Const" self.add_omit_nodes(gamma.layer_name, node.layer_name) self.add_omit_nodes(beta.layer_name, node.layer_name) self.add_omit_nodes(moving_mean.layer_name, node.layer_name) self.add_omit_nodes(moving_var.layer_name, node.layer_name) if not channel_first: attr = {"perm": [0, 3, 1, 2]} node.fluid_code.add_layer( "transpose", inputs=input, output=node, param_attr=attr) input = node attr = { "epsilon": node.get_attr("epsilon"), "param_attr": string(gamma.layer_name), "bias_attr": string(beta.layer_name), "moving_mean_name": string(moving_mean.layer_name), "moving_variance_name": string(moving_var.layer_name), "is_test": True } node.fluid_code.add_layer( "batch_norm", inputs=input, output=node, param_attr=attr) if not channel_first: attr = {"perm": [0, 2, 3, 1]} node.fluid_code.add_layer( "transpose", inputs=node, output=node, param_attr=attr) def DepthwiseConv2dNative(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) kernel = self.graph.get_node(node.layer.input[1], copy=True) assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const" self.add_omit_nodes(kernel.layer_name, node.layer_name) in_shape = input.out_shapes[0] k_size = kernel.out_shapes[0] strides = node.get_attr("strides") dilations = node.get_attr("dilations") data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() channel_first = data_format == "NCHW" self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( kernel.value, (2, 3, 0, 1)) if not channel_first: in_shape = [in_shape[i] for i in [0, 3, 1, 2]] strides = [strides[i] for i in [0, 3, 1, 2]] dilations = [dilations[i] for i in [0, 3, 1, 2]] attr = {"perm": [0, 3, 1, 2]} node.fluid_code.add_layer( "transpose", inputs=input, output=node, param_attr=attr) input = node attr = { "bias_attr": False, "param_attr": string(kernel.layer_name), "num_filters": in_shape[1], "filter_size": k_size[0:2], "stride": strides[2:4], "dilation": dilations[2:4], "groups": k_size[3] * in_shape[1], "use_cudnn": False, "padding": string(pad_mode) } node.fluid_code.add_layer( "conv2d", inputs=input, output=node, param_attr=attr) if not channel_first: attr = {"perm": [0, 2, 3, 1]} node.fluid_code.add_layer( "transpose", inputs=node, output=node, param_attr=attr) def Reshape(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) param = self.graph.get_node(node.layer.input[1], copy=True) if param.layer_type == "Const": self.add_omit_nodes(param.layer_name, node.layer_name) shape = param.value.tolist() else: shape = param inputs = {"x": input, "shape": shape} node.fluid_code.add_layer( "reshape", inputs=inputs, output=node, param_attr=None) if param.layer_type != "Const": out_shape = numpy.array(node.out_shapes[0]) if (out_shape > 0).any(): out_shape[out_shape < 0] = 0 attr = {'shape': out_shape.tolist()} node.fluid_code.add_layer( "reshape", inputs=node, output=node, param_attr=attr) def AvgPool(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) k_size = node.get_attr("ksize") strides = node.get_attr("strides") data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() channel_first = data_format == "NCHW" if not channel_first: strides = [strides[i] for i in [0, 3, 1, 2]] k_size = [k_size[i] for i in [0, 3, 1, 2]] attr = {"perm": [0, 3, 1, 2]} node.fluid_code.add_layer( "transpose", inputs=input, output=node, param_attr=attr) input = node attr = { "pool_size": k_size[2:4], "pool_type": string("avg"), "pool_stride": strides[2:4], "pool_padding": string(pad_mode) } node.fluid_code.add_layer( "pool2d", inputs=input, output=node, param_attr=attr) if not channel_first: attr = {"perm": [0, 2, 3, 1]} node.fluid_code.add_layer( "transpose", inputs=node, output=node, param_attr=attr) def SplitV(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) num_sections = self.graph.get_node(node.layer.input[1], copy=True) dim = self.graph.get_node(node.layer.input[2], copy=True) assert num_sections.layer_type == "Const" assert dim.layer_type == "Const" self.add_omit_nodes(num_sections.layer_name, node.layer_name) self.add_omit_nodes(dim.layer_name, node.layer_name) dim = dim.value attr = { "num_or_sections": num_sections.value.tolist(), "dim": dim.value } node.fluid_code.add_layer( "split", inputs=input, output=node, param_attr=attr) def ConcatV2(self, node): inputs = [ self.graph.get_node( name, copy=True) for name in node.layer.input[:-1] ] axis = self.graph.get_node(node.layer.input[-1], copy=True) assert axis.layer_type == "Const" self.add_omit_nodes(axis.layer_name, node.layer_name) axis = axis.value if axis < 0: axis += len(inputs[0].out_shapes[0]) attr = {"axis": axis} node.fluid_code.add_layer( "concat", inputs=inputs, output=node, param_attr=attr) def Tile(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) expand_times = self.graph.get_node(node.layer.input[1], copy=True) if expand_times.layer_type == "Const": self.add_omit_nodes(expand_times.layer_name, node.layer_name) expand_times = expand_times.value.tolist() else: expand_times = expand_times inputs = {"x": input, "expand_times": expand_times} node.fluid_code.add_layer( "expand", inputs=inputs, output=node, param_attr=None) def Pack(self, node): inputs = [ self.graph.get_node( name, copy=True) for name in node.layer.input ] reshape_shape = list() for input_node in inputs: k_size = input_node.out_shapes[0] if len(k_size) and k_size[-1] != -1: reshape_shape = [0] * len(k_size) reshape_shape[-1] = k_size[-1] break if len(reshape_shape): for i, input_node in enumerate(inputs): node.fluid_code.add_layer( "reshape", inputs=input_node, output='tmp_{}'.format(i), param_attr={"shape": reshape_shape}) axis = node.get_attr("axis") attr = {"axis": axis} if len(reshape_shape): inputs = ['tmp_{}'.format(i) for i in range(len(inputs))] node.fluid_code.add_layer( "stack", inputs=inputs, output=node, param_attr=attr) def Pad(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) paddings = self.graph.get_node(node.layer.input[1], copy=True) assert paddings.layer_type == "Const", "Padding should be Const" self.add_omit_nodes(paddings.layer_name, node.layer_name) paddings = paddings.value.flatten().tolist() data_format = input.tf_data_format if len(input.out_shapes[0]) == 4: new_padding = None if input.tf_data_format == "NHWC": if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0: new_padding = paddings[2:6] else: if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0: new_padding = paddings[4:] if new_padding is not None: if input.tf_data_format == "NHWC": attr = {"perm": [0, 3, 1, 2]} node.fluid_code.add_layer( "transpose", inputs=input, output=node, param_attr=attr) input = node attr = {"paddings": new_padding} node.fluid_code.add_layer( "pad2d", inputs=input, output=node, param_attr=attr) if input.tf_data_format == "NHWC": attr = {"perm": [0, 2, 3, 1]} node.fluid_code.add_layer( "transpose", inputs=node, output=node, param_attr=attr) return attr = {"paddings": paddings} node.fluid_code.add_layer( "pad", inputs=input, output=node, param_attr=attr) def Range(self, node): start = self.graph.get_node(node.layer.input[0], copy=True) limit = self.graph.get_node(node.layer.input[1], copy=True) delta = self.graph.get_node(node.layer.input[2], copy=True) if start.layer_type == "Const": self.add_omit_nodes(start.layer_name, node.layer_name) start = start.value if limit.layer_type == "Const": self.add_omit_nodes(limit.layer_name, node.layer_name) limit = limit.value if delta.layer_type == "Const": self.add_omit_nodes(delta.layer_name, node.layer_name) delta = delta.value dtype = node.dtype inputs = { "start": start, "end": limit, "step": delta, } attr = {"dtype": string(node.dtype)} node.fluid_code.add_layer( "range", inputs=inputs, output=node, param_attr=attr) def Mean(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) reduce_idx = self.graph.get_node(node.layer.input[1], copy=True) assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" dims = reduce_idx.value.tolist() keep_dims = node.get_attr("keep_dims") attr = {"dim": dims, "keep_dim": keep_dims} node.fluid_code.add_layer( "reduce_mean", inputs=input, output=node, param_attr=attr) def MatMul(self, node): x = self.graph.get_node(node.layer.input[0], copy=True) y = self.graph.get_node(node.layer.input[1], copy=True) transpose_a = node.get_attr('transpose_a') transpose_b = node.get_attr('transpose_b') inputs = {"x": x, "y": y} # fix paddle shape infer problem # should be removed after paddle 1.6 if x.out_shapes[0][-1] < 0 and y.out_shapes[0][0] > 0: shape = x.out_shapes[0] shape[-1] = y.out_shapes[0][0] attr = {"shape": shape} node.fluid_code.add_layer( "reshape", inputs=x, output=x, param_attr=attr) if transpose_a is None: transpose_a = node.get_attr('adj_x') if transpose_b is None: transpose_b = node.get_attr('adj_y') attr = {"transpose_x": transpose_a, "transpose_y": transpose_b} node.fluid_code.add_layer( "matmul", inputs=inputs, output=node, param_attr=attr) def BatchMatMul(self, node): return self.MatMul(node) def BatchMatMulV2(self, node): return self.MatMul(node) def ArgMax(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) axis = self.graph.get_node(node.layer.input[1], copy=True) assert axis.layer_type == "Const", "ArgMax only support Const parameter" self.add_omit_nodes(axis.layer_name, node.layer_name) axis = axis.value attr = {"axis": axis} node.fluid_code.add_layer( "argmax", inputs=input, output=node, param_attr=attr) def StridedSlice(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) begin = self.graph.get_node(node.layer.input[1], copy=True) end = self.graph.get_node(node.layer.input[2], copy=True) strides = self.graph.get_node(node.layer.input[3], copy=True) assert begin.layer_type == "Const" assert end.layer_type == "Const" assert strides.layer_type == "Const" self.add_omit_nodes(begin.layer_name, node.layer_name) self.add_omit_nodes(end.layer_name, node.layer_name) self.add_omit_nodes(strides.layer_name, node.layer_name) strides = strides.value.tolist() assert len(set(strides)) == 1 and strides[ 0] == 1, "Only support strides be 1 in StridedSlice OP" begin = begin.value.tolist() end = end.value.tolist() for i in range(len(end)): if end[i] == 0: end[i] = 999999 begin_mask = node.get_attr('begin_mask') end_mask = node.get_attr('end_mask') ellipsis_mask = node.get_attr('ellipsis_mask') new_axis_mask = node.get_attr('new_axis_mask') shrink_axis_mask = node.get_attr('shrink_axis_mask') assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format( node.layer_type, node.layer.name, ellipsis_mask) # TODO codes without validation # Use it carefully new_begin = list() new_end = list() new_axes = list() shrink_axes = list() for i, item in enumerate(begin): mask = (new_axis_mask >> i) & 1 if mask != 0: new_axes.append(i) continue mask = (shrink_axis_mask >> i) & 1 if mask != 0: shrink_axes.append(i) mask = (begin_mask >> i) & 1 if mask != 0: new_begin.append(0) else: new_begin.append(item) mask = (end_mask >> i) & 1 if mask != 0: new_end.append(999999) else: new_end.append(end[i]) attr = { "axes": [i for i in range(len(new_begin))], "starts": new_begin, "ends": new_end } node.fluid_code.add_layer( "slice", inputs=input, output=node, param_attr=attr) if len(new_axes) > 0: attr = {"axes": new_axes} node.fluid_code.add_layer( "unsqueeze", inputs=node, output=node, param_attr=attr) if len(shrink_axes) > 0: if len(input.out_shapes[0]) + len(new_axes) <= 1: pass else: attr = {"axes": shrink_axes} node.fluid_code.add_layer( "squeeze", inputs=node, output=node, param_attr=attr) def Slice(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) begin = self.graph.get_node(node.layer.input[1], copy=True) size = self.graph.get_node(node.layer.input[2], copy=True) if begin.layer_type == "Const": self.add_omit_nodes(begin.layer_name, node.layer_name) begin = begin.value.tolist() else: begin = self.decoder.infer_tensor(begin).tolist() # shape = begin.out_shapes[0] # attr = {"shape": shape} # node.fluid_code.add_layer( # "reshape", inputs=begin, output=begin, param_attr=attr) if size.layer_type == "Const": self.add_omit_nodes(size.layer_name, node.layer_name) size = size.value.tolist() else: size = size shape = size.out_shapes[0] attr = {"shape": shape} node.fluid_code.add_layer( "reshape", inputs=size, output=size, param_attr=attr) inputs = {"x": input, "offsets": begin, "shape": size} node.fluid_code.add_layer( "crop_tensor", inputs=inputs, output=node, param_attr=None) def Conv2DBackpropInput(self, node): out_shape = self.graph.get_node(node.layer.input[0], copy=True) kernel = self.graph.get_node(node.layer.input[1], copy=True) input = self.graph.get_node(node.layer.input[2], copy=True) assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const" self.add_omit_nodes(kernel.layer_name, node.layer_name) self.add_omit_nodes(out_shape.layer_name, node.layer_name) if out_shape.layer_type == "Const": out_shape = out_shape.value.tolist() else: out_shape = self.decoder.infer_shape_tensor(out_shape, node.out_shapes[0]) in_shape = input.out_shapes[0] if in_shape.count(-1) > 2: in_shape = self.decoder.infer_tensor(input).shape k_size = kernel.out_shapes[0] if k_size.count(-1) > 2: k_size = self.decoder.infer_tensor(kernel).shape pad_mode = node.get_attr("padding").decode() strides = node.get_attr("strides") dilations = node.get_attr("dilations") data_format = node.get_attr("data_format").decode() channel_first = data_format == "NCHW" self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( kernel.value, (3, 2, 0, 1)) if not channel_first: in_shape = [in_shape[i] for i in [0, 3, 1, 2]] strides = [strides[i] for i in [0, 3, 1, 2]] dilations = [dilations[i] for i in [0, 3, 1, 2]] attr = {"perm": [0, 3, 1, 2]} node.fluid_code.add_layer( "transpose", inputs=input, output=node, param_attr=attr) input = node else: self.graph.data_format_propagation(node) attr = { "bias_attr": False, "param_attr": string(kernel.layer_name), "num_filters": k_size[2], "filter_size": k_size[0:2], "stride": strides[2:4], "dilation": dilations[2:4], "padding": string(pad_mode), "output_size": out_shape[1:3] } node.fluid_code.add_layer( "conv2d_transpose", inputs=input, output=node, param_attr=attr) if not channel_first: attr = {"perm": [0, 2, 3, 1]} node.fluid_code.add_layer( "transpose", inputs=node, output=node, param_attr=attr) def Max(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) reduce_idx = self.graph.get_node(node.layer.input[1], copy=True) assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" keep_dims = node.get_attr("keep_dims") dim = reduce_idx.value.tolist() attr = {"dim": dim, "keep_dim": keep_dims} node.fluid_code.add_layer( "reduce_max", inputs=input, output=node, param_attr=attr) def Sum(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) reduce_idx = self.graph.get_node(node.layer.input[1], copy=True) assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" keep_dims = node.get_attr("keep_dims") dim = reduce_idx.value.tolist() attr = {"dim": dim, "keep_dim": keep_dims} node.fluid_code.add_layer( "reduce_sum", inputs=input, output=node, param_attr=attr) def Cast(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) dtype = node.dtype_map[node.get_attr('DstT')] attr = {"dtype": string(dtype)} node.fluid_code.add_layer( "cast", inputs=input, output=node, param_attr=attr) def Split(self, node): dim = self.graph.get_node(node.layer.input[0], copy=True) input = self.graph.get_node(node.layer.input[1], copy=True) assert dim.layer_type == "Const" self.add_omit_nodes(dim.layer_name, node.layer_name) num_split = node.get_attr('num_split') dim = dim.value attr = {"num_or_sections": num_split, "dim": dim} node.fluid_code.add_layer( "split", inputs=input, output=node, param_attr=attr) def Squeeze(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) squeeze_dims = node.get_attr('squeeze_dims') attr = {"axes": squeeze_dims} node.fluid_code.add_layer( "squeeze", inputs=input, output=node, param_attr=attr) def Softmax(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) axis = node.get_attr("axis") attr = {"axis": axis} node.fluid_code.add_layer( "softmax", inputs=input, output=node, param_attr=attr) def ResizeNearestNeighbor(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) resize_shape = self.graph.get_node(node.layer.input[1], copy=True) if resize_shape.layer_type == "Const": self.add_omit_nodes(resize_shape.layer_name, node.layer_name) resize_shape = resize_shape.value.tolist() else: resize_shape = resize_shape shape = resize_shape.out_shapes[0] attr = {"shape": shape} node.fluid_code.add_layer( "reshape", inputs=resize_shape, output=resize_shape, param_attr=attr) align_corners = node.get_attr("align_corners") attr = {"perm": [0, 3, 1, 2]} node.fluid_code.add_layer( "transpose", inputs=input, output=node, param_attr=attr) inputs = {"input": node, "out_shape": resize_shape} attr = {"align_corners": align_corners} node.fluid_code.add_layer( "resize_nearest", inputs=inputs, output=node, param_attr=attr) attr = {"perm": [0, 2, 3, 1]} node.fluid_code.add_layer( "transpose", inputs=node, output=node, param_attr=attr) def ResizeBilinear(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) resize_shape = self.graph.get_node(node.layer.input[1], copy=True) if resize_shape.layer_type == "Const": self.add_omit_nodes(resize_shape.layer_name, node.layer_name) resize_shape = resize_shape.value.tolist() else: shape = resize_shape.out_shapes[0] attr = {"shape": shape} node.fluid_code.add_layer( "reshape", inputs=resize_shape, output=resize_shape, param_attr=attr) align_corners = node.get_attr("align_corners") attr = {"perm": [0, 3, 1, 2]} node.fluid_code.add_layer( "transpose", inputs=input, output=node, param_attr=attr) inputs = {"input": node, "out_shape": resize_shape} attr = { #"out_shape": resize_shape, "align_corners": align_corners, "align_mode": 1 } node.fluid_code.add_layer( "resize_bilinear", inputs=inputs, output=node, param_attr=attr) attr = {"perm": [0, 2, 3, 1]} node.fluid_code.add_layer( "transpose", inputs=node, output=node, param_attr=attr) def GreaterEqual(self, node): x = self.graph.get_node(node.layer.input[0], copy=True) y = self.graph.get_node(node.layer.input[1], copy=True) inputs = {"x": x, "y": y} node.fluid_code.add_layer( "greater_equal", inputs=inputs, output=node, param_attr=None) def RandomUniform(self, node): shape = self.graph.get_node(node.layer.input[0], copy=True) if shape.layer_type == "Const": self.add_omit_nodes(shape.layer_name, node.layer_name) shape = shape.value.tolist() else: shape = shape attr = {"min": 0.0, "max": 0.9999} node.fluid_code.add_layer( "uniform_random", inputs=shape, output=node, param_attr=attr) def SquaredDifference(self, node): x = self.graph.get_node(node.layer.input[0], copy=True) y = self.graph.get_node(node.layer.input[1], copy=True) inputs = {"x": x, "y": y} node.fluid_code.add_layer( "elementwise_sub", inputs=inputs, output=node, param_attr=None) inputs = {"x": node, "y": node} node.fluid_code.add_layer( "elementwise_mul", inputs=inputs, output=node, param_attr=None) def ExpandDims(self, node): x = self.graph.get_node(node.layer.input[0], copy=True) y = self.graph.get_node(node.layer.input[1], copy=True) if y.layer_type == 'Const': self.add_omit_nodes(y.layer_name, node.layer_name) dim = y.value.tolist() if not isinstance(dim, list): dim = [dim] attr = {'axes': dim} else: attr = {'axes': y} node.fluid_code.add_layer( "unsqueeze", inputs=x, output=node, param_attr=attr) def BatchToSpaceND(self, node): x = self.graph.get_node(node.layer.input[0], copy=True) y = self.graph.get_node(node.layer.input[1], copy=True) if hasattr(node, 'skip') and node.skip: node.fluid_code.add_layer( "=", inputs=x, output=node, param_attr=None) else: raise Exception("BatchToSpaceND is not supported") def SpaceToBatchND(self, node): x = self.graph.get_node(node.layer.input[0], copy=True) y = self.graph.get_node(node.layer.input[1], copy=True) if hasattr(node, 'skip') and node.skip: node.fluid_code.add_layer( "=", inputs=x, output=node, param_attr=None) else: raise Exception("SpaceToBatchND is not supported") def OneHot(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) depth = self.graph.get_node(node.layer.input[1], copy=True) on_value = self.graph.get_node(node.layer.input[2], copy=True) off_value = self.graph.get_node(node.layer.input[3], copy=True) assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot' assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot' assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot' self.add_omit_nodes(depth.layer_name, node.layer_name) self.add_omit_nodes(on_value.layer_name, node.layer_name) self.add_omit_nodes(off_value.layer_name, node.layer_name) depth = depth.value on_value = on_value.value off_value = off_value.value assert math.fabs(on_value - 1.0) < 1e-06, "on_value should be 1 in OneHot" assert math.fabs(off_value - 0.0) < 1e-06, "off_value should be 0 in OneHot" attr = {'depth': depth} node.fluid_code.add_layer( "one_hot", inputs=input, output=node, param_attr=attr, use_fluid=True) def Pow(self, node): x = self.graph.get_node(node.layer.input[0], copy=True) factor = self.graph.get_node(node.layer.input[1], copy=True) self.add_omit_nodes(factor.layer_name, node.layer_name) if factor.layer_type == 'Const': factor = factor.value.tolist() else: factor = self.decoder.infer_tensor(factor) attr = {'factor': factor} node.fluid_code.add_layer("pow", inputs=x, output=node, param_attr=attr) def All(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) reduce_idx = self.graph.get_node(node.layer.input[1], copy=True) self.add_omit_nodes(reduce_idx.layer_name, node.layer_name) assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" dims = reduce_idx.value.tolist() keep_dims = node.get_attr("keep_dims") attr = {"dim": dims, "keep_dim": keep_dims} node.fluid_code.add_layer( "reduce_all", inputs=input, output=node, param_attr=attr) def GatherV2(self, node): embeddings = self.graph.get_node(node.layer.input[0], copy=True) index = self.graph.get_node(node.layer.input[1], copy=True) axis = self.graph.get_node(node.layer.input[2], copy=True) self.add_omit_nodes(axis.layer_name, node.layer_name) assert axis.layer_type == 'Const', "Only support Const parameter[axis]" axis = axis.value.tolist() assert axis == 0, "Only support axis=0 in GatherV2 OP" attr = {'overwrite': False} if len(index.out_shapes[0]) != 1: reshape_attr = {"shape": [-1]} node.fluid_code.add_layer( "reshape", inputs=index, output=index, param_attr=reshape_attr) inputs = {'input': embeddings, 'index': index} node.fluid_code.add_layer( "gather", inputs=inputs, output=node, param_attr=attr) def OneShotIterator(self, node): return self.Placeholder(node) def IteratorV2(self, node): dtype_map = { 1: "float32", 3: "int32", 4: "uint8", 9: "int64", 10: "bool" } shapes = node.out_shapes dtypes = node.layer.attr['output_types'].list.type node.fluid_code.add_note("{} = [0] * {}".format(node.layer_name, len(shapes))) for i, shape in enumerate(shapes): attr = { 'dtype': string(dtype_map[dtypes[i]]), 'shape': shape, 'name': string("{}_{}".format(node.layer_name, i)), 'append_batch_size': False } output = "{}[{}]".format(node.layer_name, i) node.fluid_code.add_layer( "data", inputs=None, output=output, param_attr=attr)