## Crop ### [Crop](http://caffe.berkeleyvision.org/tutorial/layers/crop.html) ``` layer { name: "crop" type: "Crop" bottom: "data1" bottom: "data2" top: “crop" crop_param{ axis: 1 offset: 0 offset: 2 } } ``` ### [paddle.fluid.layers.crop](http://paddlepaddle.org/documentation/docs/zh/1.3/api_cn/layers_cn.html#permalink-51-crop) ```python paddle.fluid.layers.crop( x, shape=None, offsets=None, name=None ) ``` ### 功能差异 #### 输出大小 Caffe:输入为`data1`,裁剪的输出大小与`data2`(Variable类型)一致; PaddlePaddle:`shape`参数支持python list的方式传入输出大小,同时也支持`Variable`类型的输入。当`shape`为`Variable`类型时,用法与Caffe类似,裁剪输出大小与`shape`参数的大小一致。 #### 裁剪偏移量 Caffe:只需要设置需要裁剪的维度的偏移量。 PaddlePaddle:每一个维度需要设置偏移量。 ### 代码示例 ``` # Caffe示例: # data1 shape:(20,3,128,128) # data2 shape:(20,2,64,64) layer { name: "crop" type: "Crop" bottom: "data1" bottom: "data2" top: ”crop" crop_param{ axis: 1 offset: 0 offset: 25 offset: 25 } } # 输出shape:(20,2,64,64) ``` ```python # PaddlePaddle示例: # inputs1输入shape:(20,3,128,128) output1 = fluid.layers.crop(x = inputs1, shape=inputs2, offsets=[0,0,25,25]) # 输出shape:(20,2,64,64) output = fluid.layers.crop(x = inputs1, shape=[20,2,64,64], offsets=[0,0,25,25]) ```