import paddle import paddle.nn as nn from paddle.utils.download import get_weights_path_from_url from typing import Union, List, Dict, Any, cast from x2paddle import torch2paddle __all__ = [ 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19_bn', 'vgg19', ] model_urls = { 'vgg11': 'https://x2paddle.bj.bcebos.com/vision/models/vgg11-pt.pdparams', 'vgg13': 'https://x2paddle.bj.bcebos.com/vision/models/vgg13-pt.pdparams', 'vgg16': 'https://x2paddle.bj.bcebos.com/vision/models/vgg16-pt.pdparams', 'vgg19': 'https://x2paddle.bj.bcebos.com/vision/models/vgg19-pt.pdparams', 'vgg11_bn': 'https://x2paddle.bj.bcebos.com/vision/models/vgg11_bn-pt.pdparams', 'vgg13_bn': 'https://x2paddle.bj.bcebos.com/vision/models/vgg13_bn-pt.pdparams', 'vgg16_bn': 'https://x2paddle.bj.bcebos.com/vision/models/vgg16_bn-pt.pdparams', 'vgg19_bn': 'https://x2paddle.bj.bcebos.com/vision/models/vgg19_bn-pt.pdparams', } class VGG(nn.Layer): def __init__(self, features, num_classes=1000, init_weights=True): super(VGG, self).__init__() self.features = features self.avgpool = nn.AdaptiveAvgPool2D((7, 7)) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), torch2paddle.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), torch2paddle.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), ) if init_weights: self._initialize_weights() def forward(self, x): x = self.features(x) x = self.avgpool(x) x = paddle.flatten(x, 1) x = self.classifier(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2D): torch2paddle.kaiming_normal_( m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: torch2paddle.constant_init_(m.bias, 0) elif isinstance(m, nn.BatchNorm2D): torch2paddle.constant_init_(m.weight, 1) torch2paddle.constant_init_(m.bias, 0) elif isinstance(m, nn.Linear): torch2paddle.normal_init_(m.weight, 0, 0.01) torch2paddle.constant_init_(m.bias, 0) def make_layers(cfg: List[Union[str, int]], batch_norm: bool=False) -> nn.Sequential: layers: List[nn.Layer] = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2D(kernel_size=2, stride=2)] else: v = cast(int, v) conv2d = nn.Conv2D(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2D(v), torch2paddle.ReLU(True)] else: layers += [conv2d, torch2paddle.ReLU(True)] in_channels = v return nn.Sequential(*layers) cfgs: Dict[str, List[Union[str, int]]] = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [ 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M' ], 'E': [ 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M' ], } def _vgg(arch: str, cfg: str, batch_norm: bool, pretrained: bool, **kwargs: Any) -> VGG: if pretrained: kwargs['init_weights'] = False model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs) if pretrained: state_dict = paddle.load(get_weights_path_from_url(model_urls[arch])) model.load_dict(state_dict) return model def vgg11(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG: r"""VGG 11-layer model (configuration "A") from `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg11', 'A', False, pretrained, **kwargs) def vgg11_bn(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG: r"""VGG 11-layer model (configuration "A") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg11_bn', 'A', True, pretrained, **kwargs) def vgg13(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG: r"""VGG 13-layer model (configuration "B") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg13', 'B', False, pretrained, **kwargs) def vgg13_bn(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG: r"""VGG 13-layer model (configuration "B") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg13_bn', 'B', True, pretrained, **kwargs) def vgg16(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG: r"""VGG 16-layer model (configuration "D") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg16', 'D', False, pretrained, **kwargs) def vgg16_bn(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG: r"""VGG 16-layer model (configuration "D") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg16_bn', 'D', True, pretrained, **kwargs) def vgg19(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG: r"""VGG 19-layer model (configuration "E") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg19', 'E', False, pretrained, **kwargs) def vgg19_bn(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> VGG: r"""VGG 19-layer model (configuration 'E') with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg19_bn', 'E', True, pretrained, **kwargs)