# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from x2paddle.core.graph import GraphNode, Graph from x2paddle.core.fluid_code import FluidCode from tensorflow.python.framework import tensor_util from tensorflow.python.platform import gfile from tensorflow.core.framework import attr_value_pb2 import tensorflow as tf import copy class TFGraphNode(GraphNode): def __init__(self, layer, layer_name=None): if layer_name is None: super(TFGraphNode, self).__init__(layer, layer.name) else: super(TFGraphNode, self).__init__(layer, layer_name) self.layer_type = layer.op self.fluid_code = FluidCode() self.dtype_map = {1: "float32", 3: "int32", 9: "int64"} @property def out_shapes(self): values = self.layer.attr["_output_shapes"].list.shape out_shapes = list() for value in values: shape = [dim.size for dim in value.dim] out_shapes.append(shape) return out_shapes @property def dtype(self): dtype = self.layer.attr["dtype"].type if dtype not in self.dtype_map: raise Exception("Dtype[{}] not in dtype_map".format(dtype)) return self.dtype_map[dtype] @property def value(self): assert self.layer_type == "Const", "Only Const node has value." attr = self.layer.attr['value'] field = getattr(attr, attr.WhichOneof('value')) return tensor_util.MakeNdarray(field) def get_attr(self, name): if name not in self.layer.attr: return None attr = self.layer.attr[name] field = attr.WhichOneof('value') value = getattr(attr, field) if field else None if isinstance(value, attr_value_pb2.AttrValue.ListValue): result = list(value.ListFields()[0][1]) for i in range(len(result)): if isinstance(result[i], int): result[i] = int(result[i]) try: if isinstance(result[i], long): result[i] = int(result[i]) except: pass return result else: return value class TFGraph(Graph): def __init__(self, model): super(TFGraph, self).__init__(model) def build(self): for layer in self.model.node: self.node_map[layer.name] = TFGraphNode(layer) for layer_name, node in self.node_map.items(): for in_node in node.layer.input: if in_node not in self.node_map: if in_node.strip().split(':')[0] in self.node_map: self.connect(in_node.strip().split(':')[0], layer_name) else: raise Exception( 'input[{}] of node[{}] does not exist in node_map'. format(in_node, layer_name)) else: self.connect(in_node, layer_name) super(TFGraph, self).build() class TFParser(object): def __init__(self, pb_model, in_nodes=None, out_nodes=None, in_shapes=None): assert in_nodes is not None, "in_nodes should not be None" assert out_nodes is not None, "out_nodes should not be None" assert in_shapes is not None, "in_shapes should not be None" assert len(in_shapes) == len( in_nodes), "length of in_shapes and in_nodes should be equal" sess = tf.Session() with gfile.FastGFile(pb_model, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) sess.graph.as_default() tf.import_graph_def(graph_def, name='') sess.run(tf.global_variables_initializer()) self.tf_graph = TFGraph(sess.graph._as_graph_def(add_shapes=True)[0]) self.tf_graph.build()