# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from x2paddle.optimizer.pattern_matcher import FuseBase from x2paddle.core.program import PaddleGraph, PaddleLayer from x2paddle.core.util import * class DygraphBatchNorm2dFuser(FuseBase): def __init__(self): super(DygraphBatchNorm2dFuser, self).__init__(graph_type="dygraph") def build_pattern(self): """ 描述需要替换的batchnorm2d图结构。 batchnorm2d层模式python实现代码示例: x336 = fluid.layers.shape(input=x334) x336 = len(x336) x337 = x336 != 4 if x337 : raise RaiseException('Exception') if False : x351 = fluid.layers.shape(input=x334) x352 = x351[0] x353 = len(x351) x354 = x353 - 2 x357 = x352 for _x356 in range(x354): x358 = _x356 + 2 x359 = x351[x358] x360 = x357 * x359 x355 = x360 x361 = x355 == 1 if x361 : raise RaiseException('Exception') x364 = self.batchnorm7(x334) """ def gen_name(id): return "x" + str(id) self.pattern.add_layer( "fluid.layers.shape", inputs={'input': "bn-input-0"}, outputs=[gen_name(0)]) self.pattern.add_layer( "prim.len", inputs={'input': gen_name(0)}, outputs=[gen_name(0)]) self.pattern.add_layer( "prim.ne", inputs={"x": gen_name(0)}, outputs=[gen_name(1)], y=4) self.pattern.add_layer("prim.if", {'input': gen_name(1)}, [gen_name(2)]) if_layer1 = self.pattern.layers[list(self.pattern.layers.keys())[-1]] pattern_block0 = PaddleGraph(if_layer1, graph_type="dygraph") pattern_block0.add_layer( "prim.exception", inputs={}, outputs=[gen_name(3)], input="Exception") if_layer1.add_block(pattern_block0) pattern_block1 = PaddleGraph(if_layer1, graph_type="dygraph") if_layer1.add_block(pattern_block1) self.pattern.add_layer("prim.if", {}, [gen_name(4)], input=False) if_layer2 = self.pattern.layers[list(self.pattern.layers.keys())[-1]] pattern_block0 = PaddleGraph(if_layer2, graph_type="dygraph") pattern_block0.add_layer( "fluid.layers.shape", inputs={'input': "bn-input-0"}, outputs=[gen_name(5)]) pattern_block0.add_layer( "prim.getitem", inputs={"list": gen_name(5)}, outputs=[gen_name(6)], index=0) pattern_block0.add_layer( "prim.len", inputs={"input": gen_name(5)}, outputs=[gen_name(7)]) pattern_block0.add_layer( "prim.sub", inputs={"x": gen_name(7)}, outputs=[gen_name(8)], y=2) pattern_block0.add_layer( "prim.equal", inputs={"input": gen_name(6)}, outputs=[gen_name(9)]) pattern_block0.add_layer( "prim.loop", inputs={"input": gen_name(8)}, outputs=[gen_name(8.1), gen_name(10)]) loop_layer = pattern_block0.layers[list(pattern_block0.layers.keys())[ -1]] pattern_block0_block0 = PaddleGraph(loop_layer, graph_type="dygraph") pattern_block0_block0.add_layer( "prim.add", inputs={"x": gen_name(10)}, outputs=[gen_name(11)], y=2) pattern_block0_block0.add_layer( "prim.getitem", inputs={"list": gen_name(5), "index": gen_name(11)}, outputs=[gen_name(12)]) pattern_block0_block0.add_layer( "prim.mul", inputs={"x": gen_name(9), "y": gen_name(12)}, outputs=[gen_name(13)]) pattern_block0_block0.add_layer( "prim.equal", inputs={"input": gen_name(13)}, outputs=[gen_name(8.1)]) loop_layer.inputs["input-1"] = gen_name(5) loop_layer.inputs["input-2"] = gen_name(9) loop_layer.add_block(pattern_block0_block0) pattern_block0.add_layer( "prim.eq", inputs={"x": gen_name(8.1)}, outputs=[gen_name(14)], y=1) pattern_block0.add_layer( "prim.if", inputs={"input": gen_name(14)}, outputs=[gen_name(15)]) if_layer21 = pattern_block0.layers[list(pattern_block0.layers.keys())[ -1]] pattern_block0_block0 = PaddleGraph(if_layer21, graph_type="dygraph") pattern_block0_block0.add_layer( "prim.exception", inputs={}, outputs=[gen_name(15)], input="Exception") if_layer21.add_block(pattern_block0_block0) pattern_block0_block1 = PaddleGraph(if_layer21, graph_type="dygraph") if_layer21.add_block(pattern_block0_block1) if_layer2.add_block(pattern_block0) pattern_block1 = PaddleGraph(if_layer2, graph_type="dygraph") if_layer2.add_block(pattern_block1) if_layer2.inputs["input-0"] = "bn-input-0" self.pattern.add_layer( "paddle.nn.BatchNorm", inputs={"input": "bn-input-0"}, outputs=[gen_name(16), gen_name(17)], is_test=True, num_channels=160, momentum=0.1, epsilon=0.001) self.pattern.build(inputs={"input-0": "bn-input-0"}) def insert_new_layer(self, graph, parameters, matches): new_layer = self.gen_new_layer(parameters, matches) new_layer_id = list(matches.keys())[0] graph.layers[new_layer_id] = new_layer matches.pop(new_layer_id) # for layer in matches.values(): # print(layer.outputs) # print("-------") def gen_new_layer(self, parameters, matches): layers_id = list(matches.keys()) layer = matches[layers_id[-1]] return layer