# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from six import text_type as _text_type import argparse import sys import x2paddle def arg_parser(): parser = argparse.ArgumentParser() parser.add_argument("--model", "-m", type=_text_type, default=None, help="model file path") parser.add_argument("--prototxt", "-p", type=_text_type, default=None, help="prototxt file of caffe model") parser.add_argument("--weight", "-w", type=_text_type, default=None, help="weight file of caffe model") parser.add_argument("--save_dir", "-s", type=_text_type, default=None, help="path to save translated model") parser.add_argument("--framework", "-f", type=_text_type, default=None, help="define which deeplearning framework") parser.add_argument( "--caffe_proto", "-c", type=_text_type, default=None, help="the .py file compiled by caffe proto file of caffe model") parser.add_argument("--version", "-v", action="store_true", default=False, help="get version of x2paddle") return parser def tf2paddle(model_path, save_dir): # check tensorflow installation and version try: import tensorflow as tf version = tf.__version__ if version >= '2.0.0' or version < '1.0.0': print( "1.0.0<=tensorflow<2.0.0 is required, and v1.14.0 is recommended" ) return except: print("Tensorflow is not installed, use \"pip install tensorflow\".") return from x2paddle.decoder.tf_decoder import TFDecoder from x2paddle.op_mapper.tf_op_mapper import TFOpMapper from x2paddle.optimizer.tf_optimizer import TFOptimizer print("Now translating model from tensorflow to paddle.") model = TFDecoder(model_path) mapper = TFOpMapper(model) optimizer = TFOptimizer(mapper) # neccesary optimization optimizer.delete_redundance_code() # optimizer below is experimental optimizer.merge_activation() optimizer.merge_bias() mapper.save_inference_model(save_dir) def caffe2paddle(proto, weight, save_dir, caffe_proto): from x2paddle.decoder.caffe_decoder import CaffeDecoder from x2paddle.op_mapper.caffe_op_mapper import CaffeOpMapper print("Now translating model from caffe to paddle.") model = CaffeDecoder(proto, weight, caffe_proto) mapper = CaffeOpMapper(model) mapper.save_inference_model(save_dir) def main(): if len(sys.argv) < 2: print("Use \"x2paddle -h\" to print the help information\n") return parser = arg_parser() args = parser.parse_args() if args.version: print("x2paddle-{} with python>=3.5\n".format(x2paddle.__version__)) return try: import paddle v0, v1, v2 = paddle.__version__.split('.') if int(v0) != 1 or int(v1) < 5: print("paddlepaddle>=1.5.0 is required") return except: print("paddlepaddle not installed, use \"pip install paddlepaddle\"") assert args.framework is not None, "--from is not defined(tensorflow/caffe)" assert args.save_dir is not None, "--save_dir is not defined" if args.framework == "tensorflow": assert args.model is not None, "--model should be defined while translating tensorflow model" tf2paddle(args.model, args.save_dir) elif args.framework == "caffe": assert args.prototxt is not None and args.weight is not None, "--prototxt and --weight should be defined while translating caffe model" caffe2paddle(args.prototxt, args.weight, args.save_dir, args.caffe_proto) else: raise Exception("--framework only support tensorflow/caffe now") if __name__ == "__main__": main()