# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from auto_scan_test import OPConvertAutoScanTest from hypothesis import reproduce_failure from onnxbase import randtool import hypothesis.strategies as st import numpy as np import unittest class TestAveragePoolConvert(OPConvertAutoScanTest): """ ONNX op: AveragePool OPset version: 7~15 """ def sample_convert_config(self, draw): input_shape = draw( st.lists( st.integers( min_value=10, max_value=20), min_size=4, max_size=4)) kernel_size = draw( st.lists( st.integers( min_value=7, max_value=10), min_size=2, max_size=2)) strides = draw( st.lists( st.integers( min_value=1, max_value=5), min_size=2, max_size=2)) if draw(st.booleans()): auto_pad = "NOTSET" padding = None if draw(st.booleans()): padding = draw( st.lists( st.integers( min_value=1, max_value=5), min_size=2, max_size=2)) padding = [0, 0] + padding else: padding = draw( st.lists( st.integers( min_value=1, max_value=5), min_size=4, max_size=4)) else: auto_pad = draw( st.sampled_from( ["SAME_LOWER", "SAME_UPPER", "VALID", "NOTSET"])) padding = None config = { "op_names": ["AveragePool"], "test_data_shapes": [input_shape], "test_data_types": [["float32"], ], "inputs_shape": [], "min_opset_version": 7, "max_opset_version": 9, "inputs_name": ["x"], "outputs_name": ["y"], "delta": 1e-4, "rtol": 1e-4, } attrs = { "auto_pad": auto_pad, "kernel_shape": kernel_size, "pads": padding, "strides": strides, } return (config, attrs) def test(self): self.run_and_statis(max_examples=30) if __name__ == "__main__": unittest.main()