from .register import register from x2paddle.core.util import * import numbers def convolutiondepthwise_shape(input_shape, num_output=None, pad=None, kernel_size=None, stride=None, dilation=None, pad_h=None, pad_w=None, kernel_h=None, kernel_w=None, stride_h=None, stride_w=None): [k_h, k_w] = [1, 1] if isinstance(kernel_size, numbers.Number): [k_h, k_w] = [kernel_size] * 2 elif len(kernel_size) > 0: k_h = kernel_h if kernel_h else kernel_size[0] k_w = kernel_w if kernel_w else kernel_size[len(kernel_size) - 1] [s_h, s_w] = [1, 1] if isinstance(stride, numbers.Number): [s_h, s_w] = [stride] * 2 elif len(stride) > 0: s_h = stride_h if stride_h else stride[0] s_w = stride_w if stride_w else stride[len(stride) - 1] [p_h, p_w] = [0, 0] if isinstance(pad, numbers.Number): [p_h, p_w] = [pad] * 2 elif len(pad) > 0: p_h = pad_h if pad_h else pad[0] p_w = pad_w if pad_w else pad[len(pad) - 1] dila_len = len(dilation) dila_h = 1 dila_w = 1 if dila_len == 2: dila_h = dilation[0] dila_w = dilation[1] elif dila_len == 1: dila_h = dila_w = dilation[0] else: assert dila_len == 0, "invalid length[%s] of dilation in convolution" % ( dila_len) i_w = input_shape[0][2] i_h = input_shape[0][3] o_h = (i_h + 2 * p_h - (dila_h * (k_h - 1) + 1)) / float(s_h) + 1 o_w = (i_w + 2 * p_w - (dila_w * (k_w - 1) + 1)) / float(s_w) + 1 import math o_h = int(math.floor(o_h)) o_w = int(math.floor(o_w)) c = num_output if num_output is not None else input_shape[0][1] return [[input_shape[0][0], c, o_h, o_w]] def convolutiondepthwise_layer(inputs, num_output=None, pad=None, kernel_size=None, stride=None, dilation=None, pad_h=None, pad_w=None, kernel_h=None, kernel_w=None, stride_h=None, stride_w=None, input_shape=None, name=None): import numbers [k_h, k_w] = [1, 1] if isinstance(kernel_size, numbers.Number): [k_h, k_w] = [kernel_size] * 2 elif len(kernel_size) > 0: k_h = kernel_h if kernel_h else kernel_size[0] k_w = kernel_w if kernel_w else kernel_size[len(kernel_size) - 1] [s_h, s_w] = [1, 1] if isinstance(stride, numbers.Number): [s_h, s_w] = [stride] * 2 elif len(stride) > 0: s_h = stride_h if stride_h else stride[0] s_w = stride_w if stride_w else stride[len(stride) - 1] [p_h, p_w] = [0, 0] if isinstance(pad, numbers.Number): [p_h, p_w] = [pad] * 2 elif len(pad) > 0: p_h = pad_h if pad_h else pad[0] p_w = pad_w if pad_w else pad[len(pad) - 1] input = inputs[0] dila_len = len(dilation) dila_h = 1 dila_w = 1 if dila_len == 2: dila_h = dilation[0] dila_w = dilation[1] elif dila_len == 1: dila_h = dila_w = dilation[0] else: assert dila_len == 0, "invalid length[%s] of dilation in convolution" % ( dila_len) c_in = input_shape[0][1] c_out = num_output if num_output is not None else input_shape[0][1] group = int(c_in / (c_in / c_out)) if c_in > c_out else int(c_in / (c_out / c_in)) out = fluid.layers.conv2d(input, dilation=[dila_h, dila_w], filter_size=[k_h, k_w], stride=[s_h, s_w], padding=[p_h, p_w], groups=group, num_filters=c_out, param_attr=name + '_weights', bias_attr=name + '_bias', name=name) return out def convolutiondepthwise_weights(name, data=None): weights_name = [] weights_name.append(name + '_weights') weights_name.append(name + '_bias') return weights_name register(kind='ConvolutionDepthwise', shape=convolutiondepthwise_shape, layer=convolutiondepthwise_layer, weights=convolutiondepthwise_weights)