# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from auto_scan_test import OPConvertAutoScanTest from hypothesis import reproduce_failure import hypothesis.strategies as st import numpy as np import unittest import random class TestHardSigmoidCovert(OPConvertAutoScanTest): """ ONNX op: HardSigmoid OPset version: 7~15 """ def sample_convert_config(self, draw): input_shape = draw( st.lists( st.integers( min_value=2, max_value=6), min_size=2, max_size=5)) input_dtype = draw(st.sampled_from(["float32"])) alpha = random.random() beta = random.random() config = { "op_names": ["HardSigmoid"], "test_data_shapes": [input_shape], "test_data_types": [[input_dtype]], "inputs_shape": [input_shape], "min_opset_version": 7, "inputs_name": ["x"], "outputs_name": ["y"], "delta": 1e-4, "rtol": 1e-4 } attrs = { "alpha": alpha, "beta": beta, } return (config, attrs) def test(self): self.run_and_statis(max_examples=30) if __name__ == "__main__": unittest.main()