# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from graph import GraphNode, Graph from tensorflow.core.framework import attr_value_pb2 from utils import * class TensorflowGraphNode(GraphNode): dtype_map = {1: "float32", 3: "int32", 9: "int64"} def __init__(self, layer, input_format, layer_name=None): super(TensorflowGraphNode, self).__init__(layer, layer_name) self.codes = list() self.code = FluidCode() self.ref_as_const = 0 self.data_format = input_format @property def layer_type(self): return self.layer.op.lower() @property def shape_dim_size(self): shape = self.layer.attr['_output_shapes'] return len(shape.list.shape[0].dim) @property def dtype(self): dtype = self.get_attr("dtype") if dtype in self.dtype_map: dtype = self.dtype_map[dtype] else: raise Exception("Unknow dtype: {}".format(dtype)) return dtype def get_attr(self, name, default_value=None): if name in self.layer.attr: attr = self.layer.attr[name] field = attr.WhichOneof('value') val = getattr(attr, field) if field else default_value if isinstance(val, attr_value_pb2.AttrValue.ListValue): result = list(val.ListFields()[0][1]) for i in range(len(result)): if isinstance(result[i], int): result[i] = int(result[i]) try: if isinstance(result[i], long): result[i] = int(result[i]) except: pass return result else: return val if isinstance(val, bytes) else val else: return default_value def clear_code(self): self.code.clear() class TensorflowGraph(Graph): useless_type = ['identity', 'placeholderwithdefault', 'switch', 'merge'] def __init__(self, tf_graph): super(TensorflowGraph, self).__init__(tf_graph) self.tf_graph = tf_graph self.identity_relation = dict() def build(self, input_format): skip_node = set(['const']) for i, layer in enumerate(self.tf_graph.node): self.node_map[layer.name] = TensorflowGraphNode( layer, input_format) for i, layer in enumerate(self.tf_graph.node): if layer.op.lower() in skip_node: continue for pred in layer.input: if pred not in self.node_map and pred.split( ':')[0] in self.node_map: pred_node = self.node_map[pred.split(':')[0]] if pred_node.layer_type == "switch": self._make_connection(pred_node, self.node_map[layer.name]) elif pred_node.layer_type == "split" or \ pred_node.layer_type == "splitv": self.node_map[pred] = TensorflowGraphNode( pred_node.layer, input_format, pred) self._make_connection(self.node_map[pred], self.node_map[layer.name]) self._make_connection(pred_node, self.node_map[pred]) else: raise Exception("Unsupported situation(name:[{}], \ OP[{}])".format(node.layer_name, node.layer_type)) elif pred in self.node_map: self._make_connection(self.node_map[pred], self.node_map[layer.name]) else: raise Exception("input: {} not in node_map".format(pred)) super(TensorflowGraph, self).build(input_format) self._process_useless_nodes() self._check_dataformat(input_format) def _check_dataformat(self, input_format): for i in range(len(self.topological_sort)): current_node = self.node_map[self.topological_sort[i]] if 'data_format'.encode() in current_node.layer.attr: s = current_node.layer.attr['data_format'].s if s != NHWC and s != NCHW: raise Exception('Unkown dataformat {}'.format(s)) self.set_data_format(current_node, s) def _process_useless_nodes(self): remove_index = list() for i in range(len(self.topological_sort)): name = self.topological_sort[i] current_node = self.node_map[name] if current_node.layer_type in self.useless_type: input = current_node.inputs[0] self.identity_relation[current_node.layer.name] = input.layer.name for node in current_node.outputs: for k in range(0, len(node.inputs)): if node.inputs[k] == current_node: node.inputs[k] = input if node not in input.outputs: input.outputs.append(node) input.outputs.remove(current_node) del self.node_map[name] if name in self.output_nodes: self.output_nodes.remove(name) if name in self.input_nodes: self.input_nodes.remove(name) remove_index.append(i) remove_index.sort(reverse=True) for i in range(len(remove_index)): del self.topological_sort[remove_index[i]] def set_data_format(self, node, data_format): assert data_format == 'NHWC'.encode() or data_format == 'NCHW'.encode() if node.data_format == data_format: return node.data_format = data_format if len(node.outputs) == 0: return for output in node.outputs: self.set_data_format(output, data_format)