from .register import register from x2paddle.core.util import * def normalize_shape(input_shape): return input_shape def normalize_layer(inputs, across_spatial=None, channel_shared=None, input_shape=None, name=None): assert across_spatial == False, "Only support across_spatial == False for Normalize" input = inputs[0] l2_norm = fluid.layers.l2_normalize(input, axis=1, name=name + '_l2') scale_param = fluid.layers.create_parameter( shape=[1] if channel_shared else [input_shape[0][0], 1, 1, input_shape[0][1]], dtype=input.dtype, attr=name + '_scale') scale_param = fluid.layers.reshape(x=scale_param, \ shape=[1] if channel_shared else [input_shape[0][0], 1, 1, input_shape[0][1]]) out = fluid.layers.elementwise_mul(x=l2_norm, y=scale_param, axis=-1 if channel_shared else 1) return out def normalize_weights(name, data=None): weights_name = [name + '_scale'] return weights_name register(kind='Normalize', shape=normalize_shape, layer=normalize_layer, weights=normalize_weights)