# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle import _C_ops from paddle import in_dynamic_mode from paddle.common_ops_import import Variable, LayerHelper, check_variable_and_dtype, check_type, check_dtype @paddle.jit.not_to_static def roi_pool(input, rois, pooled_height, pooled_width, spatial_scale=1.0, rois_num=None, name=None): if in_dynamic_mode(): assert rois_num is not None, "rois_num should not be None in dygraph mode." pool_out, argmaxes = _C_ops.roi_pool( input, rois, rois_num, "pooled_height", pooled_height, "pooled_width", pooled_width, "spatial_scale", spatial_scale) return pool_out, argmaxes else: check_variable_and_dtype(input, 'input', ['float32'], 'roi_pool') check_variable_and_dtype(rois, 'rois', ['float32'], 'roi_pool') helper = LayerHelper('roi_pool', **locals()) dtype = helper.input_dtype() pool_out = helper.create_variable_for_type_inference(dtype) argmaxes = helper.create_variable_for_type_inference(dtype='int32') inputs = { "X": input, "ROIs": rois, } if rois_num is not None: inputs['RoisNum'] = rois_num helper.append_op( type="roi_pool", inputs=inputs, outputs={"Out": pool_out, "Argmax": argmaxes}, attrs={ "pooled_height": pooled_height, "pooled_width": pooled_width, "spatial_scale": spatial_scale }) return pool_out, argmaxes class ROIPooling(object): def __init__(self, pooled_height, pooled_width, spatial_scale): self.roipooling_layer_attrs = { "pooled_height": pooled_height, "pooled_width": pooled_width, "spatial_scale": spatial_scale } def __call__(self, x0, x1): slice_x1 = paddle.slice(input=x1, axes=[1], starts=[1], ends=[5]) out = roi_pool(input=x0, rois=slice_x1, **self.roipooling_layer_attrs) return out