import onnx import numpy as np from onnx import onnx_pb, helper def get_old_name(arg, name_prefix=''): prefix_index = arg.find(name_prefix) if prefix_index != -1: last_prefix = arg[len(name_prefix):] else: last_prefix = arg idx = last_prefix.find('@') if idx != -1: last_prefix = last_prefix[:idx] return name_prefix + last_prefix def yolo_box(op, block): inputs = dict() outputs = dict() attrs = dict() for name in op.input_names: inputs[name] = op.input(name) for name in op.output_names: outputs[name] = op.output(name) for name in op.attr_names: attrs[name] = op.attr(name) model_name = outputs['Boxes'][0] input_shape = block.vars[get_old_name(inputs['X'][0])].shape image_size = inputs['ImgSize'] input_height = input_shape[2] input_width = input_shape[3] class_num = attrs['class_num'] anchors = attrs['anchors'] num_anchors = int(len(anchors)) // 2 downsample_ratio = attrs['downsample_ratio'] input_size = input_height * downsample_ratio conf_thresh = attrs['conf_thresh'] conf_thresh_mat = np.ones([num_anchors * input_height * input_width]) * conf_thresh node_list = [] im_outputs = [] x_shape = [1, num_anchors, 5 + class_num, input_height, input_width] name_x_shape = [model_name + "@x_shape"] node_x_shape = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_x_shape, value=onnx.helper.make_tensor( name=name_x_shape[0] + "@const", data_type=onnx.TensorProto.INT64, dims=[5], vals=x_shape)) node_list.append(node_x_shape) outputs_x_reshape = [model_name + "@reshape"] node_x_reshape = onnx.helper.make_node( 'Reshape', inputs=inputs['X'] + name_x_shape, outputs=outputs_x_reshape) node_list.append(node_x_reshape) outputs_x_transpose = [model_name + "@x_transpose"] node_x_transpose = onnx.helper.make_node( 'Transpose', inputs=outputs_x_reshape, outputs=outputs_x_transpose, perm=[0, 1, 3, 4, 2]) node_list.append(node_x_transpose) range_x = [] range_y = [] for i in range(0, input_width): range_x.append(i) for j in range(0, input_height): range_y.append(j) name_range_x = [model_name + "@range_x"] node_range_x = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_range_x, value=onnx.helper.make_tensor( name=name_range_x[0] + "@const", data_type=onnx.TensorProto.FLOAT, dims=[input_width], vals=range_x)) node_list.append(node_range_x) name_range_y = [model_name + "@range_y"] node_range_y = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_range_y, value=onnx.helper.make_tensor( name=name_range_y[0] + "@const", data_type=onnx.TensorProto.FLOAT, dims=[input_height], vals=range_y)) node_list.append(node_range_y) range_x_new_shape = [1, input_width] range_y_new_shape = [input_height, 1] name_range_x_new_shape = [model_name + "@range_x_new_shape"] node_range_x_new_shape = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_range_x_new_shape, value=onnx.helper.make_tensor( name=name_range_x_new_shape[0] + "@const", data_type=onnx.TensorProto.INT64, dims=[len(range_x_new_shape)], vals=range_x_new_shape)) node_list.append(node_range_x_new_shape) name_range_y_new_shape = [model_name + "@range_y_new_shape"] node_range_y_new_shape = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_range_y_new_shape, value=onnx.helper.make_tensor( name=name_range_y_new_shape[0] + "@const", data_type=onnx.TensorProto.INT64, dims=[len(range_y_new_shape)], vals=range_y_new_shape)) node_list.append(node_range_y_new_shape) outputs_range_x_reshape = [model_name + "@range_x_reshape"] node_range_x_reshape = onnx.helper.make_node( 'Reshape', inputs=name_range_x + name_range_x_new_shape, outputs=outputs_range_x_reshape) node_list.append(node_range_x_reshape) outputs_range_y_reshape = [model_name + "@range_y_reshape"] node_range_y_reshape = onnx.helper.make_node( 'Reshape', inputs=name_range_y + name_range_y_new_shape, outputs=outputs_range_y_reshape) node_list.append(node_range_y_reshape) outputs_grid_x = [model_name + "@grid_x"] node_grid_x = onnx.helper.make_node( "Tile", inputs=outputs_range_x_reshape + name_range_y_new_shape, outputs=outputs_grid_x) node_list.append(node_grid_x) outputs_grid_y = [model_name + "@grid_y"] node_grid_y = onnx.helper.make_node( "Tile", inputs=outputs_range_y_reshape + name_range_x_new_shape, outputs=outputs_grid_y) node_list.append(node_grid_y) outputs_box_x = [model_name + "@box_x"] outputs_box_y = [model_name + "@box_y"] outputs_box_w = [model_name + "@box_w"] outputs_box_h = [model_name + "@box_h"] outputs_conf = [model_name + "@conf"] outputs_prob = [model_name + "@prob"] node_split_input = onnx.helper.make_node( "Split", inputs=outputs_x_transpose, outputs=outputs_box_x + outputs_box_y + outputs_box_w\ + outputs_box_h + outputs_conf + outputs_prob, axis=-1, split=[1, 1, 1, 1, 1, class_num]) node_list.append(node_split_input) outputs_box_x_sigmoid = [model_name + "@box_x_sigmoid"] outputs_box_y_sigmoid = [model_name + "@box_y_sigmoid"] node_box_x_sigmoid = onnx.helper.make_node( "Sigmoid", inputs=outputs_box_x, outputs=outputs_box_x_sigmoid) node_list.append(node_box_x_sigmoid) node_box_y_sigmoid = onnx.helper.make_node( "Sigmoid", inputs=outputs_box_y, outputs=outputs_box_y_sigmoid) node_list.append(node_box_y_sigmoid) outputs_box_x_squeeze = [model_name + "@box_x_squeeze"] outputs_box_y_squeeze = [model_name + "@box_y_squeeze"] node_box_x_squeeze = onnx.helper.make_node( 'Squeeze', inputs=outputs_box_x_sigmoid, outputs=outputs_box_x_squeeze, axes=[4]) node_list.append(node_box_x_squeeze) node_box_y_squeeze = onnx.helper.make_node( 'Squeeze', inputs=outputs_box_y_sigmoid, outputs=outputs_box_y_squeeze, axes=[4]) node_list.append(node_box_y_squeeze) outputs_box_x_add_grid = [model_name + "@box_x_add_grid"] outputs_box_y_add_grid = [model_name + "@box_y_add_grid"] node_box_x_add_grid = onnx.helper.make_node( "Add", inputs=outputs_grid_x + outputs_box_x_squeeze, outputs=outputs_box_x_add_grid) node_list.append(node_box_x_add_grid) node_box_y_add_grid = onnx.helper.make_node( "Add", inputs=outputs_grid_y + outputs_box_y_squeeze, outputs=outputs_box_y_add_grid) node_list.append(node_box_y_add_grid) name_input_h = [model_name + "@input_h"] name_input_w = [model_name + "@input_w"] node_input_h = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_input_h, value=onnx.helper.make_tensor( name=name_input_w[0] + "@const", data_type=onnx.TensorProto.FLOAT, dims=(), vals=[input_height])) node_list.append(node_input_h) node_input_w = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_input_w, value=onnx.helper.make_tensor( name=name_input_w[0] + "@const", data_type=onnx.TensorProto.FLOAT, dims=(), vals=[input_width])) node_list.append(node_input_w) outputs_box_x_encode = [model_name + "@box_x_encode"] outputs_box_y_encode = [model_name + "@box_y_encode"] node_box_x_encode = onnx.helper.make_node( 'Div', inputs=outputs_box_x_add_grid + name_input_w, outputs=outputs_box_x_encode) node_list.append(node_box_x_encode) node_box_y_encode = onnx.helper.make_node( 'Div', inputs=outputs_box_y_add_grid + name_input_h, outputs=outputs_box_y_encode) node_list.append(node_box_y_encode) name_anchor_tensor = [model_name + "@anchor_tensor"] node_anchor_tensor = onnx.helper.make_node( "Constant", inputs=[], outputs=name_anchor_tensor, value=onnx.helper.make_tensor( name=name_anchor_tensor[0] + "@const", data_type=onnx.TensorProto.FLOAT, dims=[len(anchors)], vals=anchors)) node_list.append(node_anchor_tensor) anchor_shape = [int(num_anchors), 2] name_anchor_shape = [model_name + "@anchor_shape"] node_anchor_shape = onnx.helper.make_node( "Constant", inputs=[], outputs=name_anchor_shape, value=onnx.helper.make_tensor( name=name_anchor_shape[0] + "@const", data_type=onnx.TensorProto.INT64, dims=[2], vals=anchor_shape)) node_list.append(node_anchor_shape) outputs_anchor_tensor_reshape = [model_name + "@anchor_tensor_reshape"] node_anchor_tensor_reshape = onnx.helper.make_node( "Reshape", inputs=name_anchor_tensor + name_anchor_shape, outputs=outputs_anchor_tensor_reshape) node_list.append(node_anchor_tensor_reshape) name_input_size = [model_name + "@input_size"] node_input_size = onnx.helper.make_node( "Constant", inputs=[], outputs=name_input_size, value=onnx.helper.make_tensor( name=name_input_size[0] + "@const", data_type=onnx.TensorProto.FLOAT, dims=(), vals=[input_size])) node_list.append(node_input_size) outputs_anchors_div_input_size = [model_name + "@anchors_div_input_size"] node_anchors_div_input_size = onnx.helper.make_node( "Div", inputs=outputs_anchor_tensor_reshape + name_input_size, outputs=outputs_anchors_div_input_size) node_list.append(node_anchors_div_input_size) outputs_anchor_w = [model_name + "@anchor_w"] outputs_anchor_h = [model_name + "@anchor_h"] node_anchor_split = onnx.helper.make_node( 'Split', inputs=outputs_anchors_div_input_size, outputs=outputs_anchor_w + outputs_anchor_h, axis=1, split=[1, 1]) node_list.append(node_anchor_split) new_anchor_shape = [1, int(num_anchors), 1, 1] name_new_anchor_shape = [model_name + "@new_anchor_shape"] node_new_anchor_shape = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_new_anchor_shape, value=onnx.helper.make_tensor( name=name_new_anchor_shape[0] + "@const", data_type=onnx.TensorProto.INT64, dims=[len(new_anchor_shape)], vals=new_anchor_shape)) node_list.append(node_new_anchor_shape) outputs_anchor_w_reshape = [model_name + "@anchor_w_reshape"] outputs_anchor_h_reshape = [model_name + "@anchor_h_reshape"] node_anchor_w_reshape = onnx.helper.make_node( 'Reshape', inputs=outputs_anchor_w + name_new_anchor_shape, outputs=outputs_anchor_w_reshape) node_list.append(node_anchor_w_reshape) node_anchor_h_reshape = onnx.helper.make_node( 'Reshape', inputs=outputs_anchor_h + name_new_anchor_shape, outputs=outputs_anchor_h_reshape) node_list.append(node_anchor_h_reshape) outputs_box_w_squeeze = [model_name + "@box_w_squeeze"] node_box_w_squeeze = onnx.helper.make_node( 'Squeeze', inputs=outputs_box_w, outputs=outputs_box_w_squeeze, axes=[4]) node_list.append(node_box_w_squeeze) outputs_box_h_squeeze = [model_name + "@box_h_squeeze"] node_box_h_squeeze = onnx.helper.make_node( 'Squeeze', inputs=outputs_box_h, outputs=outputs_box_h_squeeze, axes=[4]) node_list.append(node_box_h_squeeze) outputs_box_w_exp = [model_name + "@box_w_exp"] node_box_w_exp = onnx.helper.make_node( "Exp", inputs=outputs_box_w_squeeze, outputs=outputs_box_w_exp) node_list.append(node_box_w_exp) outputs_box_h_exp = [model_name + "@box_h_exp"] node_box_h_exp = onnx.helper.make_node( "Exp", inputs=outputs_box_h_squeeze, outputs=outputs_box_h_exp) node_list.append(node_box_h_exp) outputs_box_w_encode = [model_name + "box_w_encode"] outputs_box_h_encode = [model_name + "box_h_encode"] node_box_w_encode = onnx.helper.make_node( 'Mul', inputs=outputs_box_w_exp + outputs_anchor_w_reshape, outputs=outputs_box_w_encode) node_list.append(node_box_w_encode) node_box_h_encode = onnx.helper.make_node( 'Mul', inputs=outputs_box_h_exp + outputs_anchor_h_reshape, outputs=outputs_box_h_encode) node_list.append(node_box_h_encode) outputs_conf_sigmoid = [model_name + "@conf_sigmoid"] node_conf_sigmoid = onnx.helper.make_node( 'Sigmoid', inputs=outputs_conf, outputs=outputs_conf_sigmoid) node_list.append(node_conf_sigmoid) name_conf_thresh = [model_name + "@conf_thresh"] node_conf_thresh = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_conf_thresh, value=onnx.helper.make_tensor( name=name_conf_thresh[0] + "@const", data_type=onnx.TensorProto.FLOAT, dims=[num_anchors * input_height * input_width], vals=conf_thresh_mat)) node_list.append(node_conf_thresh) conf_shape = [1, int(num_anchors), input_height, input_width, 1] name_conf_shape = [model_name + "@conf_shape"] node_conf_shape = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_conf_shape, value=onnx.helper.make_tensor( name=name_conf_shape[0] + "@const", data_type=onnx.TensorProto.INT64, dims=[len(conf_shape)], vals=conf_shape)) node_list.append(node_conf_shape) outputs_conf_thresh_reshape = [model_name + "@conf_thresh_reshape"] node_conf_thresh_reshape = onnx.helper.make_node( 'Reshape', inputs=name_conf_thresh + name_conf_shape, outputs=outputs_conf_thresh_reshape) node_list.append(node_conf_thresh_reshape) outputs_conf_sub = [model_name + "@conf_sub"] node_conf_sub = onnx.helper.make_node( 'Sub', inputs=outputs_conf_sigmoid + outputs_conf_thresh_reshape, outputs=outputs_conf_sub) node_list.append(node_conf_sub) outputs_conf_clip = [model_name + "@conf_clip"] node_conf_clip = onnx.helper.make_node( 'Clip', inputs=outputs_conf_sub, outputs=outputs_conf_clip) node_list.append(node_conf_clip) zeros = [0] name_zeros = [model_name + "@zeros"] node_zeros = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_zeros, value=onnx.helper.make_tensor( name=name_zeros[0] + "@const", data_type=onnx.TensorProto.FLOAT, dims=(), vals=zeros)) node_list.append(node_zeros) outputs_conf_clip_bool = [model_name + "@conf_clip_bool"] node_conf_clip_bool = onnx.helper.make_node( 'Greater', inputs=outputs_conf_clip + name_zeros, outputs=outputs_conf_clip_bool) node_list.append(node_conf_clip_bool) outputs_conf_clip_cast = [model_name + "@conf_clip_cast"] node_conf_clip_cast = onnx.helper.make_node( 'Cast', inputs=outputs_conf_clip_bool, outputs=outputs_conf_clip_cast, to=1) node_list.append(node_conf_clip_cast) outputs_conf_set_zero = [model_name + "@conf_set_zero"] node_conf_set_zero = onnx.helper.make_node( 'Mul', inputs=outputs_conf_sigmoid + outputs_conf_clip_cast, outputs=outputs_conf_set_zero) node_list.append(node_conf_set_zero) outputs_prob_sigmoid = [model_name + "@prob_sigmoid"] node_prob_sigmoid = onnx.helper.make_node( 'Sigmoid', inputs=outputs_prob, outputs=outputs_prob_sigmoid) node_list.append(node_prob_sigmoid) new_shape = [1, int(num_anchors), input_height, input_width, 1] name_new_shape = [model_name + "@new_shape"] node_new_shape = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_new_shape, value=onnx.helper.make_tensor( name=name_new_shape[0] + "@const", data_type=onnx.TensorProto.INT64, dims=[len(new_shape)], vals=new_shape)) node_list.append(node_new_shape) outputs_conf_new_shape = [model_name + "@_conf_new_shape"] node_conf_new_shape = onnx.helper.make_node( 'Reshape', inputs=outputs_conf_set_zero + name_new_shape, outputs=outputs_conf_new_shape) node_list.append(node_conf_new_shape) outputs_score = [model_name + "@score"] node_score = onnx.helper.make_node( 'Mul', inputs=outputs_prob_sigmoid + outputs_conf_new_shape, outputs=outputs_score) node_list.append(node_score) outputs_conf_bool = [model_name + "@conf_bool"] node_conf_bool = onnx.helper.make_node( 'Greater', inputs=outputs_conf_new_shape + name_zeros, outputs=outputs_conf_bool) node_list.append(node_conf_bool) outputs_box_x_new_shape = [model_name + "@box_x_new_shape"] node_box_x_new_shape = onnx.helper.make_node( 'Reshape', inputs=outputs_box_x_encode + name_new_shape, outputs=outputs_box_x_new_shape) node_list.append(node_box_x_new_shape) outputs_box_y_new_shape = [model_name + "@box_y_new_shape"] node_box_y_new_shape = onnx.helper.make_node( 'Reshape', inputs=outputs_box_y_encode + name_new_shape, outputs=outputs_box_y_new_shape) node_list.append(node_box_y_new_shape) outputs_box_w_new_shape = [model_name + "@box_w_new_shape"] node_box_w_new_shape = onnx.helper.make_node( 'Reshape', inputs=outputs_box_w_encode + name_new_shape, outputs=outputs_box_w_new_shape) node_list.append(node_box_w_new_shape) outputs_box_h_new_shape = [model_name + "@box_h_new_shape"] node_box_h_new_shape = onnx.helper.make_node( 'Reshape', inputs=outputs_box_h_encode + name_new_shape, outputs=outputs_box_h_new_shape) node_list.append(node_box_h_new_shape) outputs_pred_box = [model_name + "@pred_box"] node_pred_box = onnx.helper.make_node( 'Concat', inputs=outputs_box_x_new_shape + outputs_box_y_new_shape + \ outputs_box_w_new_shape + outputs_box_h_new_shape, outputs=outputs_pred_box, axis=4) node_list.append(node_pred_box) outputs_conf_cast = [model_name + "conf_cast"] node_conf_cast = onnx.helper.make_node( 'Cast', inputs=outputs_conf_bool, outputs=outputs_conf_cast, to=1) node_list.append(node_conf_cast) outputs_pred_box_mul_conf = [model_name + "@pred_box_mul_conf"] node_pred_box_mul_conf = onnx.helper.make_node( 'Mul', inputs=outputs_pred_box + outputs_conf_cast, outputs=outputs_pred_box_mul_conf) node_list.append(node_pred_box_mul_conf) box_shape = [1, int(num_anchors) * input_height * input_width, 4] name_box_shape = [model_name + "@box_shape"] node_box_shape = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_box_shape, value=onnx.helper.make_tensor( name=name_box_shape[0] + "@const", data_type=onnx.TensorProto.INT64, dims=[len(box_shape)], vals=box_shape)) node_list.append(node_box_shape) outputs_pred_box_new_shape = [model_name + "@pred_box_new_shape"] node_pred_box_new_shape = onnx.helper.make_node( 'Reshape', inputs=outputs_pred_box_mul_conf + name_box_shape, outputs=outputs_pred_box_new_shape) node_list.append(node_pred_box_new_shape) outputs_pred_box_x = [model_name + "@_pred_box_x"] outputs_pred_box_y = [model_name + "@_pred_box_y"] outputs_pred_box_w = [model_name + "@_pred_box_w"] outputs_pred_box_h = [model_name + "@_pred_box_h"] node_pred_box_split = onnx.helper.make_node( 'Split', inputs=outputs_pred_box_new_shape, outputs=outputs_pred_box_x + outputs_pred_box_y + outputs_pred_box_w + outputs_pred_box_h, axis=2) node_list.append(node_pred_box_split) name_number_two = [model_name + "@number_two"] node_number_two = onnx.helper.make_node( "Constant", inputs=[], outputs=name_number_two, value=onnx.helper.make_tensor( name=name_number_two[0] + "@const", data_type=onnx.TensorProto.FLOAT, dims=(), vals=[2])) node_list.append(node_number_two) outputs_half_w = [model_name + "@half_w"] node_half_w = onnx.helper.make_node( "Div", inputs=outputs_pred_box_w + name_number_two, outputs=outputs_half_w) node_list.append(node_half_w) outputs_half_h = [model_name + "@half_h"] node_half_h = onnx.helper.make_node( "Div", inputs=outputs_pred_box_h + name_number_two, outputs=outputs_half_h) node_list.append(node_half_h) outputs_pred_box_x1 = [model_name + "@pred_box_x1"] node_pred_box_x1 = onnx.helper.make_node( 'Sub', inputs=outputs_pred_box_x + outputs_half_w, outputs=outputs_pred_box_x1) node_list.append(node_pred_box_x1) outputs_pred_box_y1 = [model_name + "@pred_box_y1"] node_pred_box_y1 = onnx.helper.make_node( 'Sub', inputs=outputs_pred_box_y + outputs_half_h, outputs=outputs_pred_box_y1) node_list.append(node_pred_box_y1) outputs_pred_box_x2 = [model_name + "@pred_box_x2"] node_pred_box_x2 = onnx.helper.make_node( 'Add', inputs=outputs_pred_box_x + outputs_half_w, outputs=outputs_pred_box_x2) node_list.append(node_pred_box_x2) outputs_pred_box_y2 = [model_name + "@pred_box_y2"] node_pred_box_y2 = onnx.helper.make_node( 'Add', inputs=outputs_pred_box_y + outputs_half_h, outputs=outputs_pred_box_y2) node_list.append(node_pred_box_y2) outputs_sqeeze_image_size = [model_name + "@sqeeze_image_size"] node_sqeeze_image_size = onnx.helper.make_node( "Squeeze", axes=[0], inputs=image_size, outputs=outputs_sqeeze_image_size) node_list.append(node_sqeeze_image_size) output_img_height = [model_name + "@img_height"] output_img_width = [model_name + "@img_width"] node_image_size_split = onnx.helper.make_node( "Split", inputs=outputs_sqeeze_image_size, outputs=output_img_height + output_img_width, axis=-1, split=[1, 1]) node_list.append(node_image_size_split) output_img_width_cast = [model_name + "@img_width_cast"] node_img_width_cast = onnx.helper.make_node( 'Cast', inputs=output_img_width, outputs=output_img_width_cast, to=1) node_list.append(node_img_width_cast) output_img_height_cast = [model_name + "@img_height_cast"] node_img_height_cast = onnx.helper.make_node( 'Cast', inputs=output_img_height, outputs=output_img_height_cast, to=1) node_list.append(node_img_height_cast) outputs_pred_box_x1_decode = [model_name + "@pred_box_x1_decode"] outputs_pred_box_y1_decode = [model_name + "@pred_box_y1_decode"] outputs_pred_box_x2_decode = [model_name + "@pred_box_x2_decode"] outputs_pred_box_y2_decode = [model_name + "@pred_box_y2_decode"] node_pred_box_x1_decode = onnx.helper.make_node( 'Mul', inputs=outputs_pred_box_x1 + output_img_width_cast, outputs=outputs_pred_box_x1_decode) node_list.append(node_pred_box_x1_decode) node_pred_box_y1_decode = onnx.helper.make_node( 'Mul', inputs=outputs_pred_box_y1 + output_img_height_cast, outputs=outputs_pred_box_y1_decode) node_list.append(node_pred_box_y1_decode) node_pred_box_x2_decode = onnx.helper.make_node( 'Mul', inputs=outputs_pred_box_x2 + output_img_width_cast, outputs=outputs_pred_box_x2_decode) node_list.append(node_pred_box_x2_decode) node_pred_box_y2_decode = onnx.helper.make_node( 'Mul', inputs=outputs_pred_box_y2 + output_img_height_cast, outputs=outputs_pred_box_y2_decode) node_list.append(node_pred_box_y2_decode) name_number_one = [model_name + "@one"] node_number_one = onnx.helper.make_node( 'Constant', inputs=[], outputs=name_number_one, value=onnx.helper.make_tensor( name=name_number_one[0] + "@const", data_type=onnx.TensorProto.FLOAT, dims=(), vals=[1])) node_list.append(node_number_one) output_new_img_height = [model_name + "@new_img_height"] node_new_img_height = onnx.helper.make_node( 'Sub', inputs=output_img_height_cast + name_number_one, outputs=output_new_img_height) node_list.append(node_new_img_height) output_new_img_width = [model_name + "@new_img_width"] node_new_img_width = onnx.helper.make_node( 'Sub', inputs=output_img_width_cast + name_number_one, outputs=output_new_img_width) node_list.append(node_new_img_width) outputs_pred_box_x2_sub_w = [model_name + "@pred_box_x2_sub_w"] node_pred_box_x2_sub_w = onnx.helper.make_node( 'Sub', inputs=outputs_pred_box_x2_decode + output_new_img_width, outputs=outputs_pred_box_x2_sub_w) node_list.append(node_pred_box_x2_sub_w) outputs_pred_box_y2_sub_h = [model_name + "@pred_box_y2_sub_h"] node_pred_box_y2_sub_h = onnx.helper.make_node( 'Sub', inputs=outputs_pred_box_y2_decode + output_new_img_height, outputs=outputs_pred_box_y2_sub_h) node_list.append(node_pred_box_y2_sub_h) outputs_pred_box_x1_clip = [model_name + "@pred_box_x1_clip"] outputs_pred_box_y1_clip = [model_name + "@pred_box_y1_clip"] outputs_pred_box_x2_clip = [model_name + "@pred_box_x2_clip"] outputs_pred_box_y2_clip = [model_name + "@pred_box_y2_clip"] node_pred_box_x1_clip = onnx.helper.make_node( 'Clip', inputs=outputs_pred_box_x1_decode, outputs=outputs_pred_box_x1_clip, min=0.0, max=float(np.inf)) node_list.append(node_pred_box_x1_clip) node_pred_box_y1_clip = onnx.helper.make_node( 'Clip', inputs=outputs_pred_box_y1_decode, outputs=outputs_pred_box_y1_clip, min=0.0, max=float(np.inf)) node_list.append(node_pred_box_y1_clip) node_pred_box_x2_clip = onnx.helper.make_node( 'Clip', inputs=outputs_pred_box_x2_sub_w, outputs=outputs_pred_box_x2_clip, min=0.0, max=float(np.inf)) node_list.append(node_pred_box_x2_clip) node_pred_box_y2_clip = onnx.helper.make_node( 'Clip', inputs=outputs_pred_box_y2_sub_h, outputs=outputs_pred_box_y2_clip, min=0.0, max=float(np.inf)) node_list.append(node_pred_box_y2_clip) outputs_pred_box_x2_res = [model_name + "@box_x2_res"] node_pred_box_x2_res = onnx.helper.make_node( 'Sub', inputs=outputs_pred_box_x2_decode + outputs_pred_box_x2_clip, outputs=outputs_pred_box_x2_res) node_list.append(node_pred_box_x2_res) outputs_pred_box_y2_res = [model_name + "@box_y2_res"] node_pred_box_y2_res = onnx.helper.make_node( 'Sub', inputs=outputs_pred_box_y2_decode + outputs_pred_box_y2_clip, outputs=outputs_pred_box_y2_res) node_list.append(node_pred_box_y2_res) node_pred_box_result = onnx.helper.make_node( 'Concat', inputs=outputs_pred_box_x1_clip + outputs_pred_box_y1_clip + outputs_pred_box_x2_res + outputs_pred_box_y2_res, outputs=outputs['Boxes'], axis=-1) node_list.append(node_pred_box_result) score_shape = [1, input_height * input_width * int(num_anchors), class_num] name_score_shape = [model_name + "@score_shape"] node_score_shape = onnx.helper.make_node( "Constant", inputs=[], outputs=name_score_shape, value=onnx.helper.make_tensor( name=name_score_shape[0] + "@const", data_type=onnx.TensorProto.INT64, dims=[len(score_shape)], vals=score_shape)) node_list.append(node_score_shape) node_score_new_shape = onnx.helper.make_node( 'Reshape', inputs=outputs_score + name_score_shape, outputs=outputs['Scores']) node_list.append(node_score_new_shape) return node_list