# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle.fluid import core from paddle.fluid.framework import Variable, in_dygraph_mode from paddle.fluid.layer_helper import LayerHelper def multiclass_nms(bboxes, scores, score_threshold, nms_top_k, keep_top_k, nms_threshold=0.3, normalized=True, nms_eta=1., background_label=-1, return_index=False, return_rois_num=True, rois_num=None, name=None): helper = LayerHelper('multiclass_nms3', **locals()) if in_dygraph_mode(): attrs = ('background_label', background_label, 'score_threshold', score_threshold, 'nms_top_k', nms_top_k, 'nms_threshold', nms_threshold, 'keep_top_k', keep_top_k, 'nms_eta', nms_eta, 'normalized', normalized) output, index, nms_rois_num = core.ops.multiclass_nms3(bboxes, scores, rois_num, *attrs) if not return_index: index = None return output, nms_rois_num, index else: output = helper.create_variable_for_type_inference(dtype=bboxes.dtype) index = helper.create_variable_for_type_inference(dtype='int') inputs = {'BBoxes': bboxes, 'Scores': scores} outputs = {'Out': output, 'Index': index} if rois_num is not None: inputs['RoisNum'] = rois_num if return_rois_num: nms_rois_num = helper.create_variable_for_type_inference( dtype='int32') outputs['NmsRoisNum'] = nms_rois_num helper.append_op( type="multiclass_nms3", inputs=inputs, attrs={ 'background_label': background_label, 'score_threshold': score_threshold, 'nms_top_k': nms_top_k, 'nms_threshold': nms_threshold, 'keep_top_k': keep_top_k, 'nms_eta': nms_eta, 'normalized': normalized }, outputs=outputs) output.stop_gradient = True index.stop_gradient = True if not return_index: index = None if not return_rois_num: nms_rois_num = None return output, nms_rois_num, index class NMS(object): def __init__(self, score_threshold, keep_top_k, nms_threshold): self.score_threshold = score_threshold self.keep_top_k = keep_top_k self.nms_threshold = nms_threshold def __call__(self, bboxes, scores): attrs = { 'background_label': -1, 'score_threshold': self.score_threshold, 'nms_top_k': -1, 'nms_threshold': self.nms_threshold, 'keep_top_k': self.keep_top_k, 'nms_eta': 1.0, 'normalized': False, 'return_index': True } output, nms_rois_num, index = multiclass_nms(bboxes, scores, **attrs) clas = paddle.slice(output, axes=[1], starts=[0], ends=[1]) clas = paddle.cast(clas, dtype="int64") index = paddle.cast(index, dtype="int64") if bboxes.shape[0] == 1: batch = paddle.zeros_like(clas, dtype="int64") else: bboxes_count = bboxes.shape[1] batch = paddle.divide(index, bboxes_count) index = paddle.mod(index, bboxes_count) res = paddle.concat([batch, clas, index], axis=1) return res