# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from auto_scan_test import OPConvertAutoScanTest from hypothesis import reproduce_failure import hypothesis.strategies as st import numpy as np import unittest import random class TestIsNaNConcert(OPConvertAutoScanTest): """ ONNX op: IsNaN OPset version: 9~15 """ def sample_convert_config(self, draw): input_shape = draw( st.lists( st.integers( min_value=20, max_value=30), min_size=3, max_size=5)) input_dtype = draw(st.sampled_from(["float32"])) config = { "op_names": ["IsNaN", ], "test_data_shapes": [input_shape], "test_data_types": [input_dtype], "inputs_shape": [input_shape], "min_opset_version": 9, "inputs_name": ["x"], "outputs_name": ["y"], "delta": 1e-4, "rtol": 1e-4, "run_dynamic": True, } attrs = {} return (config, attrs) def test(self): self.run_and_statis(max_examples=50) if __name__ == "__main__": unittest.main()