""" A custom layer for 'detectionout' used in 'SSD' model to produce outputs Note: Since Paddle's implementation of 'detectionout' applied 'flatten' and 'softmax' ops on the input of 'conf', while Caffe's implementation do not. """ from .register import register def detectionoutput_shape(input_shape): """ the output shape of this layer is dynamic and not determined by 'input_shape' Args: @input_shape (list of int): input shape Returns: @output_shape (list of num): a list of numbers represent the output shape """ output_shape = [-1, 6] return output_shape def detectionoutput_layer(inputs, name, background_label=0, share_location=True, nms_param=None, keep_top_k=100, confidence_threshold=0.1): """ build a layer of type 'detectionout' using fluid Args: @inputs (list of variables): input fluid variables for this layer @name (str): name for this layer Returns: output (variable): output variable for this layer """ import paddle.fluid as fluid if nms_param is None: nms_param = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0} mbox_conf_flatten = inputs[1] mbox_priorbox = inputs[2] mbox_priorbox_list = fluid.layers.split(mbox_priorbox, 2, dim=1) pb = mbox_priorbox_list[0] pbv = mbox_priorbox_list[1] pb = fluid.layers.reshape(x=pb, shape=[-1, 4]) pbv = fluid.layers.reshape(x=pbv, shape=[-1, 4]) mbox_loc = inputs[0] mbox_loc = fluid.layers.reshape( x=mbox_loc, shape=[-1, mbox_conf_flatten.shape[1], 4]) default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0} fields = ['eta', 'top_k', 'nms_threshold'] for f in default.keys(): if not nms_param.has_key(f): nms_param[f] = default[f] nmsed_outs = fluid.layers.detection_output( scores=mbox_conf_flatten, loc=mbox_loc, prior_box=pb, prior_box_var=pbv, background_label=background_label, nms_threshold=nms_param["nms_threshold"], nms_top_k=nms_param["top_k"], keep_top_k=keep_top_k, score_threshold=confidence_threshold, nms_eta=nms_param["eta"]) return nmsed_outs register( kind='DetectionOutput', shape=detectionoutput_shape, layer=detectionoutput_layer)