# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from x2paddle.optimizer.pattern_matcher import FuseBase from x2paddle.core.program import PaddleGraph, PaddleLayer from x2paddle.core.util import * class Static_BNScaleFuser(FuseBase): def __init__(self): super(Static_BNScaleFuser, self).__init__(graph_type="dygraph") def build_pattern(self): """ 描述需要替换的batchnorm2d图结构。 batchnorm2d层模式python实现代码示例: conv5_bn = fluid.layers.batch_norm(input=conv5, is_test=True, param_attr=None, bias_attr=None, moving_mean_name='conv5_bn_mean', moving_variance_name='conv5_bn_variance', epsilon=9.999999747378752e-06, name='conv5_bn') conv5_scale_scale = fluid.ParamAttr(name='conv5_scale_scale') conv5_scale_cparam1 = fluid.layers.create_parameter(attr=conv5_scale_scale, dtype=conv5_bn.dtype, shape=[256], name='conv5_scale_cparam1', is_bias=True, default_initializer=Constant(value=1.0)) conv5_scale_mul = fluid.layers.elementwise_mul(x=conv5_bn, y=conv5_scale_cparam1, axis=1) conv5_scale_offset = fluid.ParamAttr(name='conv5_scale_offset') conv5_scale_cparam2 = fluid.layers.create_parameter(attr=conv5_scale_offset, dtype=conv5_bn.dtype, shape=[256], name='conv5_scale_cparam2', is_bias=True, default_initializer=Constant(value=1.0)) conv5_scale = fluid.layers.elementwise_add(x=conv5_scale_mul, y=conv5_scale_cparam2, axis=1) """ def gen_name(id): return "x" + str(id) self.pattern.add_layer( "fluid.layers.batch_norm", inputs={"input": "bn-input-0"}, outputs=[gen_name(0)]) self.pattern.add_layer( "fluid.ParamAttr", inputs={}, outputs=[gen_name(1)]) self.pattern.add_layer( "fluid.layers.create_parameter", inputs={"attr": gen_name(1)}, outputs=[gen_name(2)]) inputs_dict = {} inputs_dict['x'] = gen_name(0) inputs_dict['y'] = gen_name(2) self.pattern.add_layer( "fluid.layers.elementwise_mul", inputs=inputs_dict, outputs=[gen_name(3)]) self.pattern.add_layer( "fluid.ParamAttr", inputs={}, outputs=[gen_name(4)]) self.pattern.add_layer( "fluid.layers.create_parameter", inputs={"attr": gen_name(4)}, outputs=[gen_name(5)]) inputs_dict = {} inputs_dict['x'] = gen_name(3) inputs_dict['y'] = gen_name(5) self.pattern.add_layer( "fluid.layers.elementwise_add", inputs=inputs_dict, outputs=[gen_name(6)]) self.pattern.build(inputs={"input-0": "bn-input-0"}) def insert_new_layer(self, graph, parameters, matches): new_layer = self.gen_new_layer(parameters, matches) new_layer_id = list(matches.keys())[0] graph.layers[new_layer_id] = new_layer matches.pop(new_layer_id) def gen_new_layer(self, parameters, matches): layers_id = list(matches.keys()) layer = matches[layers_id[0]] layer_inputs = layer.inputs layer_name = layer.outputs[0] layer_attrs = layer.attrs layer_attrs["param_attr"] = string("{}_scale".format(layer_name)) layer_attrs["bias_attr"] = string("{}_offset".format(layer_name)) layer = matches[layers_id[-1]] layer_outputs = layer.outputs layer = matches[layers_id[1]] layer_name = layer.outputs[0] scale_numpy = parameters.pop(layer_name) parameters[layer_attrs["param_attr"][1: -1]] = scale_numpy layer = matches[layers_id[4]] layer_name = layer.outputs[0] scale_numpy = parameters.pop(layer_name) parameters[layer_attrs["bias_attr"][1: -1]] = scale_numpy new_layer = PaddleLayer( layers_id[0], "fluid.layers.batch_norm", inputs=layer_inputs, outputs=layer_outputs, **layer_attrs) return new_layer