# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import numpy as np from collections import OrderedDict from x2paddle.optimizer.pattern_matcher import FuseBase from x2paddle.core.program import PaddleGraph, PaddleLayer from x2paddle.core.util import * class Div2Scale(FuseBase): def __init__(self): super(Div2Scale, self).__init__() def build_pattern(self): """ code describe: x2paddle_296 = paddle.full(dtype='float32', shape=[1], fill_value=8.0) x2paddle_293 = paddle.transpose(x=x2paddle_292, perm=[0, 2, 1, 3]) x2paddle_294 = paddle.transpose(x=x2paddle_260, perm=[0, 2, 3, 1]) x2paddle_295 = paddle.matmul(x=x2paddle_293, y=x2paddle_294) x2paddle_297 = paddle.divide(x=x2paddle_295, y=x2paddle_296) """ def gen_name(id): return "x" + str(id) self.pattern.add_layer( "paddle.full", inputs={}, outputs=[gen_name(0)], shape=[1], fill_value=8) self.pattern.add_layer( "paddle.transpose", inputs={"x": "div2scale-input-0"}, outputs=[gen_name(1)], perm=[0, 2, 1, 3]) self.pattern.add_layer( "paddle.transpose", inputs={"x": "div2scale-input-1"}, outputs=[gen_name(2)], perm=[0, 2, 1, 3]) self.pattern.add_layer( "paddle.matmul", inputs={"x": gen_name(1), "y": gen_name(2)}, outputs=[gen_name(3)]) self.pattern.add_layer( "paddle.divide", inputs={"x": gen_name(3), "y": gen_name(0)}, outputs=[gen_name(4)]) self.pattern.build(inputs={ "input-0": "div2scale-input-0", "input-1": "div2scale-input-1", }) def insert_new_layer(self, graph, parameters, matches): new_layer, new_layer_id = self.gen_new_layer(parameters, matches) graph.layers[new_layer_id] = new_layer matches_copy = copy.deepcopy(matches) for layer_id, layer in matches_copy.items(): if layer.kernel in ["paddle.transpose", "paddle.matmul"]: matches.pop(layer_id) matches.pop(new_layer_id) def gen_new_layer(self, parameters, matches): layer_id_list = list(matches.keys()) layer_id_list.sort(key=int) layer_inputs = list() layer_inputs_ids = list() fill_value = 0 for layer_id, layer in matches.items(): if layer.kernel == "paddle.full": fill_value = layer.attrs["fill_value"] if layer.kernel == "paddle.divide": layer_inputs.append(layer.inputs["x"]) layer_inputs_ids.append(layer_id) output_name = layer.outputs[0] new_layer = PaddleLayer( layer_id_list[0], "paddle.scale", inputs={"x": layer_inputs[0]}, outputs=[output_name], scale=1 / fill_value) return new_layer, layer_inputs_ids[0]