# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from x2paddle.optimizer.pattern_matcher import FuseBase from x2paddle.core.program import PaddleGraph, PaddleLayer from x2paddle.core.util import * class DygraphIfFuser(FuseBase): def __init__(self): super(DygraphIfFuser, self).__init__(graph_type="dygraph") def build_pattern(self): """ 描述需要替换的if图结构。 if层模式python实现代码示例: x81 = 'relu' in {'layer4': 'out', 'layer3': 'aux'} if x81 : ... """ self.pattern.add_layer( "prim.if", inputs={"input": "if-input-0"}, outputs=["x0"]) self.pattern.build(inputs={"input-0": "if-input-0"}) def insert_new_layer(self, graph, parameters, matches): layer_id = list(matches.keys())[0] layer = list(matches.values())[0] if "input" not in layer.inputs: matches.pop(layer_id) return for id in graph.edges_in[layer_id]: input_layer = graph.layers[id] input_layer_id = id if input_layer.outputs == [layer.inputs["input"]]: if input_layer.kernel == "prim.if": matches.pop(layer_id) return input_id = id break if list(layer.inputs.values()).count(input_layer.outputs[0]) > 1 or \ (input_layer_id in graph.edges_out and len(graph.edges_out[input_layer_id]) > 1): matches.pop(layer_id) return func_name = input_layer.kernel.replace(".", "_") if func_name in ["prim_if", "prim_loop"]: matches.pop(layer_id) return from x2paddle.op_mapper.dygraph.pytorch2paddle import prim2code func = getattr(prim2code, func_name) line = func(input_layer, is_return_line=True) layer.attrs["input"] = line layer.inputs.pop("input") matches.pop(layer_id) if len(input_layer.outputs) == 1: matches[input_id] = input_layer