# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from x2paddle.core.graph import GraphNode, Graph from x2paddle.core.fluid_code import FluidCode from tensorflow.python.framework import tensor_util from tensorflow.core.framework import attr_value_pb2 import tensorflow as tf import copy as cp import numpy import sys class TFGraphNode(GraphNode): def __init__(self, layer, layer_name=None, data_format="NHWC"): if layer_name is None: super(TFGraphNode, self).__init__( layer, layer.name.replace('/', '_').replace('-', '_').replace('^', '')) else: super(TFGraphNode, self).__init__( layer, layer_name.replace('/', '_').replace('-', '_').replace('^', '')) self.layer_type = layer.op self.tf_data_format = data_format self.pd_data_format = "NCHW" self.fluid_code = FluidCode() self.dtype_map = { 1: "float32", 3: "int32", 4: "uint8", 9: "int64", 10: "bool" } @property def out_shapes(self): if self.layer_type == "OneShotIterator" or self.layer_type == "IteratorV2": values = self.layer.attr["output_shapes"].list.shape else: values = self.layer.attr["_output_shapes"].list.shape out_shapes = list() for value in values: shape = [dim.size for dim in value.dim] out_shapes.append(shape) return out_shapes @property def dtype(self): keys = ['dtype', 'T', 'DstT'] for k in keys: dtype = self.layer.attr[k].type if dtype > 0: break if dtype == 0: dtype = self.layer.attr['output_types'].list.type[0] if dtype not in self.dtype_map: raise Exception("Dtype[{}] of node({}) not in dtype_map".format( dtype, self.layer.name)) return self.dtype_map[dtype] def set_dtype(self, dtype): dtype_idx = 0 for k, v in self.dtype_map.items(): if v == dtype: dtype_idx = k if dtype_idx == 0: raise Exception("Cannot set dtype of node to '{}'".format(dtype)) self.layer.attr['dtype'].type = dtype_idx @property def raw_dtype(self): keys = ['dtype', 'Tidx', 'T', 'DstT'] for k in keys: dtype = self.layer.attr[k].type if dtype > 0: break return dtype @property def value(self): assert self.layer_type == "Const", "Only Const node has value." attr = self.layer.attr['value'] field = getattr(attr, attr.WhichOneof('value')) return tensor_util.MakeNdarray(field) @property def name(self): if hasattr(self, 'index'): return self.layer_name + "_p{}".format(self.index) return self.layer_name def get_attr(self, name): if name not in self.layer.attr: return None attr = self.layer.attr[name] field = attr.WhichOneof('value') value = getattr(attr, field) if field else None if isinstance(value, attr_value_pb2.AttrValue.ListValue): result = list(value.ListFields()[0][1]) for i in range(len(result)): if isinstance(result[i], int): result[i] = int(result[i]) try: if isinstance(result[i], long): result[i] = int(result[i]) except: pass return result else: return value class TFGraph(Graph): def __init__(self, model, data_format="NHWC"): super(TFGraph, self).__init__(model) self.identity_map = dict() self.multi_out_ops = ['Split', 'SplitV', 'IteratorV2'] self.tf_data_format = data_format self.graph_name = "TFModel" def build(self): for layer in self.model.node: if layer.op == 'Assert': continue self.node_map[layer.name.replace('/', '_').replace( '-', '_')] = TFGraphNode( layer, data_format=self.tf_data_format) for layer_name, node in self.node_map.items(): if node.layer_type == 'Const': continue for in_node in node.layer.input: in_node = in_node.replace('/', '_').replace('-', '_').replace( '^', '') if in_node not in self.node_map: if in_node.strip().split(':')[0] in self.node_map: self.connect(in_node.strip().split(':')[0], layer_name) else: raise Exception( 'input[{}] of node[{}] does not exist in node_map'. format(in_node, layer_name)) else: self.connect(in_node, layer_name) super(TFGraph, self).build() for layer in self.model.node: if layer.op == 'Assert': for ipt in layer.input: ipt_name = ipt.replace('-', '_').replace('/', '_') if ipt_name in self.output_nodes: idx = self.output_nodes.index(ipt_name) del self.output_nodes[idx] # tensorflow graph optimize self._remove_isolated_node() self._optimize_dialiation_conv() self._remove_identity_node() self._remove_cast_node() def get_node(self, node_name, copy=False): items = node_name.strip().split(':') items[0] = items[0].replace('/', '_').replace('-', '_') if items[0] in self.identity_map: items[0] = self.identity_map[items[0]] new_node_name = ":".join(items) node = super(TFGraph, self).get_node(new_node_name, copy) if node is None: return None if node.layer_type == "Switch": if hasattr(node, 'index'): del node.index if len(items) == 1 and node.layer_type in self.multi_out_ops: node.index = 0 return node def get_input_node(self, node, idx=0, copy=False): input_node_name = node.layer.input[idx] return self.get_node(input_node_name, copy) def remove_node(self, node_name): if node_name not in self.node_map: raise Exception("Node[{}] not in graph".format(node_name)) inputs = self.node_map[node_name].inputs outputs = self.node_map[node_name].outputs # assert len(inputs) == 1 input_node = self.node_map[inputs[0]] idx = input_node.outputs.index(node_name) del input_node.outputs[idx] for output in outputs: node = self.node_map[output] idx = node.inputs.index(node_name) node.inputs[idx] = inputs[0] input_node.outputs.append(output) del self.node_map[node_name] idx = self.topo_sort.index(node_name) del self.topo_sort[idx] def _optimize_dialiation_conv(self): for name in list(self.node_map.keys()): node = self.node_map[name] if node.layer_type == "SpaceToBatchND": is_dilation = True out_node0 = self.node_map[node.outputs[0]] if out_node0.layer_type != 'ExpandDims': is_dilation = False continue out_node1 = self.node_map[out_node0.outputs[0]] if out_node1.layer_type != 'Conv2D': is_dilation = False continue out_node2 = self.node_map[out_node1.outputs[0]] if out_node2.layer_type != 'Squeeze': is_dilation = False continue out_node3 = self.node_map[out_node2.outputs[0]] if out_node3.layer_type != 'BatchToSpaceND': is_dilation = False continue if is_dilation: node.skip = True out_node3.skip = True block_shape = self.node_map[node.inputs[1]] out_node1.dilation = block_shape.value.tolist() def _remove_isolated_node(self): # delete isolated nodes isolated_nodes = list() for node_name in self.node_map.keys(): if len(self.get_node(node_name).inputs) == 0 and len( self.get_node(node_name).outputs) == 0: isolated_nodes.append(node_name) for node_name in isolated_nodes: del self.node_map[node_name] if node_name in self.input_nodes: idx = self.input_nodes.index(node_name) del self.input_nodes[idx] if node_name in self.output_nodes: idx = self.output_nodes.index(node_name) del self.output_nodes[idx] idx = self.topo_sort.index(node_name) del self.topo_sort[idx] def _remove_identity_node(self): identity_ops = [ 'Identity', 'StopGradient', 'Switch', 'Merge', 'PlaceholderWithDefault', 'IteratorGetNext' ] identity_node = list() for node_name, node in self.node_map.items(): if node.layer_type in identity_ops: identity_node.append(node_name) for node_name in identity_node: node = self.get_node(node_name) input_node = self.get_node(node.inputs[0]) self.remove_node(node_name) self.identity_map[node_name] = input_node.layer_name if node_name in self.output_nodes: idx = self.output_nodes.index(node_name) self.output_nodes[idx] = input_node.layer_name def _remove_cast_node(self): cast_node = list() for node_name, node in self.node_map.items(): if node.layer_type == "Cast": input = self.get_node(node.inputs[0]) if input.layer_type != "Placeholder" or len(input.outputs) != 1: continue cast_node.append(node_name) for node_name in cast_node: node = self.get_node(node_name) input_node = self.get_node(node.inputs[0]) input_node.layer.attr["dtype"].type = node.raw_dtype self.remove_node(node_name) self.identity_map[node_name] = input_node.layer_name if node_name in self.output_nodes: idx = self.output_nodes.index(node_name) self.output_nodes[idx] = input_node.layer_name def data_format_propagation(self, node): current_node = self.node_map[node.layer_name] outputs = current_node.outputs if len(outputs) == 0: return for out in outputs: next_node = self.node_map[out] next_node.tf_data_format = node.tf_data_format self.data_format_propagation(next_node) class TFDecoder(object): def __init__(self, pb_model, data_format="NHWC", define_input_shape=False): try: self.sess = tf.compat.v1.Session() except: self.sess = tf.Session() self.inputs_info = dict() self.define_input_shape = define_input_shape with open(pb_model, 'rb') as f: try: graph_def = tf.compat.v1.GraphDef() except: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) input_map = self._check_input_shape(graph_def) self._fix_output_shape(graph_def) self.sess.graph.as_default() tf.import_graph_def(graph_def, name='', input_map=input_map) try: initializer = tf.compat.v1.global_variables_initializer() except: initializer = tf.global_variables_initializer() self.sess.run(initializer) self.tf_graph = TFGraph( self.sess.graph._as_graph_def(add_shapes=True)[0], data_format) self.tf_graph.build() def _fix_output_shape(self, graph): for i in range(len(graph.node)): node = graph.node[i] if node.op == "swish_f32": graph.node[i].attr['_disable_call_shape_inference'].b = False def _check_input_shape(self, graph_def): numpy.random.seed(13) graph_def = cp.deepcopy(graph_def) input_map = dict() for layer in graph_def.node: if layer.op != "Placeholder" and layer.op != "OneShotIterator" and layer.op != "IteratorV2": continue graph_node = TFGraphNode(layer) dtype = graph_node.layer.attr['dtype'].type need_define_shape = 0 if self.define_input_shape: need_define_shape = 3 elif graph_node.layer.attr[ 'shape'].shape.unknown_rank or not graph_node.get_attr( "shape"): need_define_shape = 1 else: value = graph_node.layer.attr["shape"].shape shape = [dim.size for dim in value.dim] if shape.count(-1) > 1: need_define_shape = 2 if need_define_shape == 1: try: shape = graph_node.out_shapes[0] if len(shape) > 0 and shape.count(-1) < 2: need_define_shape = 0 except: pass if need_define_shape > 0: shape = None if graph_node.get_attr("shape"): value = value = graph_node.layer.attr["shape"].shape shape = [dim.size for dim in value.dim] if need_define_shape == 1: print("Unknown shape for input tensor[tensor name: \"{}\"]". format(layer.name)) elif need_define_shape == 2: print( "\nShape[now is {}] for input tensor[tensor name: \"{}\"] not support yet" .format(shape, layer.name)) else: print( "Define shape[now is {}] for input tensor[tensor name: \"{}\']" .format(shape, layer.name)) print( "Use your keyboard type the shape of input tensor below :)") right_shape_been_input = False while not right_shape_been_input: try: shape = raw_input( "Shape of Input(e.g. None,224,224,3): ") except: shape = input("Shape of Input(e.g. None,224,224,3): ") if shape.count("None") > 1: print("Only 1 dimension can be None, type again:)") else: right_shape_been_input = True shape = [ None if dim == "None" else int(dim) for dim in shape.strip().split(',') ] assert shape.count(None) <= 1, "Only one dimension can be None" try: x2paddle_input = tf.compat.v1.placeholder( dtype=dtype, shape=shape, name="x2paddle_{}".format(layer.name)) except: x2paddle_input = tf.placeholder( dtype=dtype, shape=shape, name="x2paddle_{}".format(layer.name)) input_map["{}:0".format(layer.name)] = x2paddle_input if shape.count(None) > 0: shape[shape.index(None)] = -1 self.inputs_info["x2paddle_{}".format(layer.name)] = (shape, dtype) else: value = graph_node.layer.attr["shape"].shape shape = [dim.size for dim in value.dim] self.inputs_info[layer.name] = (shape, dtype) return input_map # trick method # should be removed after PaddlePaddle V1.6 been released def infer_tensor(self, graph_node, out_shape=None, use_diff_inputs=True): if hasattr(graph_node, "index"): tensor_name = graph_node.layer.name + ":{}".format(graph_node.index) else: tensor_name = graph_node.layer.name + ":0" feed = dict() if use_diff_inputs: batch_size = [2, 3, 5] else: batch_size = [2] results = list() for b in batch_size: for input_name, info in self.inputs_info.items(): (shape, dtype) = cp.deepcopy(info) input_tensor = self.sess.graph.get_tensor_by_name(input_name + ":0") if shape.count(-1) > 0: shape[shape.index(-1)] = b feed[input_tensor] = numpy.random.random_sample(shape) output_tensor = self.sess.graph.get_tensor_by_name(tensor_name) if use_diff_inputs: results.append(self.sess.run([output_tensor], feed)[0].flatten()) else: return self.sess.run([output_tensor], feed)[0] compare01 = (results[0] == results[1]) compare12 = (results[1] == results[2]) if compare01.all() and compare12.all(): return results[0].tolist() if (compare01 == compare12).all(): index = numpy.argwhere(compare01 == False).flatten() if index.shape[0] != 1: raise Exception("There's not only one unstable dimension") results[0][index[0]] = -1 index = numpy.argwhere(results[0] < 0).flatten() if index.shape[0] > 2: print("Warning: More than two dimension less than zero") if index.shape[0] == 2 and out_shape is not None: if out_shape[index[1]] > 0: results[0][index[1]] = out_shape[index[1]] else: results[0][index[0]] = out_shape[index[0]] return results[0].tolist() else: raise Exception("Couldn't infer a stable shape shape tensor value")