# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from x2paddle.decoder.tf_decoder import TFGraph, TFGraphNode from x2paddle.core.program import PaddleGraph from x2paddle.core.op_mapper import OpMapper from x2paddle.core.util import * import traceback import math import inspect import numpy import sys name_counter = dict() def gen_name(op_name, var_name): name = "{}_{}".format(op_name, var_name) if name not in name_counter: name_counter[name] = 0 else: name_counter[name] += 1 name = name + '_' + str(name_counter[name]) return name # compute padding size for SAME mode def get_same_padding(in_size, kernel_size, stride): new_size = int(math.ceil(in_size * 1.0 / stride)) pad_size = (new_size - 1) * stride + kernel_size - in_size if pad_size < 0: pad_size = 0 pad0 = int(pad_size / 2) pad1 = pad_size - pad0 return [pad0, pad1] class TFOpMapper(OpMapper): directly_map_ops = { 'Relu': ['paddle.nn.ReLU'], 'Relu6': ['paddle.nn.ReLU6'], 'Abs': ['paddle.abs'], 'Sigmoid': ['paddle.nn.Sigmoid'], 'Exp': ['paddle.exp'], 'Rsqrt': ['paddle.rsqrt'], 'Sqrt': ['paddle.sqrt'], 'swish_f32': ['paddle.nn.Swish'], 'Tanh': ['paddle.nn.Tanh'], 'Softplus': ['paddle.nn.Softplus'], 'LeakyRelu': ['paddle.nn.LeakyReLU', dict(alpha='negative_slope')], 'Softmax': ['paddle.nn.Softmax'], 'Floor': ['paddle.floor'], 'Erf': ['paddle.erf'], 'Square': ['paddle.square'] } elementwise_ops = { 'Add': 'paddle.add', 'AddV2': 'paddle.add', 'RealDiv': 'paddle.divide', 'DivNoNan': 'paddle.divide', 'Sub': 'paddle.subtract', 'Maximum': 'paddle.maximum', 'Minimum': 'paddle.minimum', 'Mul': 'paddle.multiply', 'FloorDiv': 'paddle.floor_divide', 'FloorMod': 'paddle.floor_mod', 'LogicalAnd': 'logical_and', } bool_ops = { 'LessEqual': 'paddle.less_equal', 'GreaterEqual': 'paddle.greater_equal', 'Greater': 'paddle.greater_than', 'NotEqual': 'paddle.not_equal', 'Equal': 'paddle.equal', } def __init__(self, decoder): super(TFOpMapper, self).__init__() self.decoder = decoder self.graph = decoder.tf_graph if not self.op_checker(): raise Exception("Model is not supported yet.") self.params = dict() self.nn_name2id = dict() self.input_index = 0 self.inputs_info = dict() self.paddle_graph = PaddleGraph( parent_layer=None, graph_type="dygraph", source_type="tf") self.paddle_graph.outputs = self.graph.output_nodes not_placeholder = list() for name in self.graph.input_nodes: if self.graph.get_node( name).layer_type != "Placeholder" and self.graph.get_node( name ).layer_type != "OneShotIterator" and self.graph.get_node( name).layer_type != "IteratorV2": not_placeholder.append(name) for name in not_placeholder: idx = self.graph.input_nodes.index(name) del self.graph.input_nodes[idx] print("Total nodes: {}".format( sum([ isinstance(node, TFGraphNode) for name, node in self.graph.node_map.items() ]))) print("Nodes converting ...") for i, node_name in enumerate(self.graph.topo_sort): sys.stderr.write("\rConverting node {} ... ".format(i + 1)) node = self.graph.get_node(node_name) op = node.layer_type if op in self.directly_map_ops: self.directly_map(node) elif op in self.elementwise_ops: self.elementwise_map(node) elif op in self.bool_ops: self.bool_map(node) elif hasattr(self, op): func = getattr(self, op) func(node) print("\nNodes converted.") self.paddle_graph.set_name(self.graph.graph_name) self.paddle_graph.set_parameters(self.params) self.paddle_graph.set_inputs_info(self.inputs_info) def op_checker(self): unsupported_ops = set() for node_name in self.graph.topo_sort: node = self.graph.get_node(node_name) op = node.layer_type if not hasattr(self, op) and \ op not in self.directly_map_ops and \ op not in self.elementwise_ops and \ op not in self.bool_ops: unsupported_ops.add(op) if len(unsupported_ops) == 0: return True else: if len(unsupported_ops) > 0: print("\n========= {} OPs are not supported yet ===========". format(len(unsupported_ops))) for op in unsupported_ops: print("========== {} ============".format(op)) return False def directly_map(self, node): inputs = node.layer.input assert len(inputs) == 1, 'directly_map error with multi inputs' op_info = self.directly_map_ops[node.layer_type] input = self.graph.get_input_node(node, 0) paddle_op = op_info[0] layer_attrs = dict() if len(op_info) > 1: attrs_name_map_dict = op_info[1] for tf_attr_name, pd_attr_name in attrs_name_map_dict.items(): layer_attrs[pd_attr_name] = node.get_attr(tf_attr_name) if paddle_op.startswith("paddle.nn"): op_name = paddle_op[10:].lower() op_name = name_generator(op_name, self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] self.paddle_graph.add_layer( kernel=paddle_op, inputs={"x": input.name}, outputs=layer_outputs, **layer_attrs) else: self.paddle_graph.add_layer( kernel=paddle_op, inputs={"x": input.name}, outputs=[node.name], **layer_attrs) def elementwise_map(self, node, op_type=None): if op_type is None: assert node.layer_type in self.elementwise_ops op_type = self.elementwise_ops[node.layer_type] x = self.graph.get_input_node(node, 0) y = self.graph.get_input_node(node, 1) x_shape = x.out_shapes[0] y_shape = y.out_shapes[0] layer_id = self.paddle_graph.add_layer( kernel=op_type, inputs={"x": x.name, "y": y.name}, outputs=[node.name]) self.paddle_graph.layers[layer_id].input_shapes = { "x": x_shape, "y": y_shape } def bool_map(self, node): op_type = self.bool_ops[node.layer_type] self.elementwise_map(node, op_type) node.set_dtype("bool") def Placeholder(self, node): shape = node.out_shapes[0] assert len(shape) != 0, "Unknown shape of input nodes[{}].".format( node.layer_name) dtype = node.dtype self.paddle_graph.add_layer( kernel="paddle.to_tensor", inputs={}, outputs=[node.name], data="x{}".format(self.input_index)) self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype] self.input_index += 1 def Const(self, node): shape = node.out_shapes[0] dtype = node.dtype value = node.value if len(shape) == 0: assert value.size == 1, "Unexpected situation happend" if value == float('inf'): value = "float('inf')" self.paddle_graph.add_layer( "paddle.full", inputs={}, outputs=[node.name], dtype=string(dtype), shape=[1], fill_value=value) return self.params[node.name] = node.value if 0 not in shape: self.paddle_graph.add_layer( "self.create_parameter", inputs={}, outputs=[node.name], shape=shape, attr=string(node.name), dtype=string(dtype), default_initializer="paddle.nn.initializer.Constant(value=0.0)") def Transpose(self, node): input = self.graph.get_input_node(node, 0) perm = self.graph.get_input_node(node, 1) if perm.layer_type == "Const": perm = perm.value.tolist() else: perm = self.decoder.infer_tensor( perm, use_diff_inputs=False).tolist() self.paddle_graph.add_layer( "paddle.transpose", inputs={"x": input.name}, outputs=[node.name], perm=perm) def Where(self, node): if len(node.layer.input) == 1: cond = self.graph.get_input_node(node, 0) self.paddle_graph.add_layer( "paddle.nonzero", inputs={"x": cond.name}, outputs=[node.name]) else: cond = self.graph.get_input_node(node, 0) x = self.graph.get_input_node(node, 1) y = self.graph.get_input_node(node, 2) self.paddle_graph.add_layer( "paddle.where", inputs={"condition": cond.name, "x": x.name, "y": y.name}, outputs=[node.name]) def Neg(self, node): input = self.graph.get_input_node(node, 0) self.paddle_graph.add_layer( "paddle.scale", inputs={"x": input.name}, outputs=[node.name], scale=-1) def Fill(self, node): dims = self.graph.get_input_node(node, 0) input_value = self.graph.get_input_node(node, 1) inputs = dict() layer_attrs = dict() assert input_value.layer_type == "Const", "Value of fill OP should be Const" if dims.layer_type == "Const": layer_attrs["shape"] = dims.value.tolist() else: inputs["shape"] = dims.name layer_attrs["dtype"] = string(input_value.dtype) layer_attrs["fill_value"] = input_value.value self.paddle_graph.add_layer( "paddle.full", inputs=inputs, outputs=[node.name], **layer_attrs) def DepthToSpace(self, node): input = self.graph.get_input_node(node, 0) block_size = node.get_attr("block_size") data_format = node.get_attr("data_format").decode() if data_format == "NHWC": n, h, w, c = input.out_shapes[0] else: n, c, h, w = input.out_shapes[0] input_name = input.name if data_format == "NHWC": transpose_name = gen_name("depth_to_space", "transpose") self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": input.name}, outputs=[transpose_name], perm=[0, 3, 1, 2]) input_name = transpose_name shape = [0, block_size * block_size, -1, h, w] reshape_name = gen_name("depth_to_space", "reshape") self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": input_name}, outputs=[reshape_name], shape=shape) transpose_name = gen_name("depth_to_space", "transpose") self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": reshape_name}, outputs=[transpose_name], perm=[0, 2, 1, 3, 4]) reshape_name = gen_name("depth_to_space", "reshape") self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": transpose_name}, outputs=[reshape_name], shape=[0, c, h, w]) self.paddle_graph.add_layer( kernel="paddle.nn.functional.pixel_shuffle", inputs={"x": reshape_name}, outputs=[node.name], upscale_factor=block_size) if data_format == "NHWC": self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": node.name}, outputs=[node.name], perm=[0, 2, 3, 1]) def MaxPool(self, node): input = self.graph.get_input_node(node, 0) k_size = node.get_attr("ksize") strides = node.get_attr("strides") data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() input_name = input.name if data_format == "NHWC": transpose_name = gen_name("max_pool", "transpose") self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": input.name}, outputs=[transpose_name], perm=[0, 3, 1, 2]) strides = [strides[i] for i in [0, 3, 1, 2]] k_size = [k_size[i] for i in [0, 3, 1, 2]] input_name = transpose_name op_name = name_generator("pool", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] self.paddle_graph.add_layer( kernel="paddle.nn.MaxPool2D", inputs={"input": input_name}, outputs=layer_outputs, kernel_size=k_size[2:4], stride=strides[2:4], padding=string(pad_mode)) if data_format == "NHWC": self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": node.name}, outputs=[node.name], perm=[0, 2, 3, 1]) def Conv2D(self, node): op_name = name_generator("conv", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] input = self.graph.get_input_node(node, 0) kernel = self.graph.get_input_node(node, 1) k_size = kernel.out_shapes[0] strides = node.get_attr("strides") dilations = node.get_attr("dilations") data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() if data_format == "NHWC": n, h, w, c = input.out_shapes[0] else: n, c, h, w = input.out_shapes[0] if kernel.layer_type == 'Const': kernel_value = kernel.value else: kernel_value = self.decoder.infer_tensor( kernel, use_diff_inputs=False) kernel_weight_name = op_name + ".weight" self.params[kernel_weight_name] = numpy.transpose(kernel_value, (3, 2, 0, 1)) input_name = input.name if data_format == "NHWC": strides = [strides[i] for i in [0, 3, 1, 2]] dilations = [dilations[i] for i in [0, 3, 1, 2]] transpose_name = gen_name("conv2d", "transpose") self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": input.name}, outputs=[transpose_name], perm=[0, 3, 1, 2]) input_name = transpose_name if c == -1: attr = {"shape": [0, k_size[2], 0, 0]} self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": input_name}, outputs=[input_name], shape=[0, k_size[2], 0, 0]) self.paddle_graph.add_layer( kernel="paddle.nn.Conv2D", inputs={"input": input_name}, outputs=layer_outputs, weight_attr=string(kernel_weight_name), bias_attr=False, in_channels=k_size[2], out_channels=k_size[3], kernel_size=k_size[0:2], stride=strides[2:4], dilation=dilations[2:4], padding=string(pad_mode)) if data_format == "NHWC": self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": node.name}, outputs=[node.name], perm=[0, 2, 3, 1]) def Conv3D(self, node): op_name = name_generator("conv", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] input = self.graph.get_input_node(node, 0) kernel = self.graph.get_input_node(node, 1) k_size = kernel.out_shapes[0] strides = node.get_attr("strides") dilations = node.get_attr("dilations") data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() if data_format == "NDHWC": n, d, h, w, c = input.out_shapes[0] else: n, c, d, h, w = input.out_shapes[0] if kernel.layer_type == 'Const': kernel_value = kernel.value else: kernel_value = self.decoder.infer_tensor( kernel, use_diff_inputs=False) kernel_weight_name = op_name + ".weight" self.params[kernel_weight_name] = numpy.transpose(kernel_value, (4, 3, 0, 1, 2)) input_name = input.name if data_format == "NDHWC": strides = [strides[i] for i in [0, 4, 1, 2, 3]] dilations = [dilations[i] for i in [0, 4, 1, 2, 3]] transpose_name = gen_name("conv3d", "transpose") self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": input.name}, outputs=[transpose_name], perm=[0, 4, 1, 2, 3]) input_name = transpose_name if c == -1: attr = {"shape": [0, k_size[2], 0, 0, 0]} self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": input_name}, outputs=[input_name], shape=[0, k_size[2], 0, 0, 0]) self.paddle_graph.add_layer( kernel="paddle.nn.Conv3D", inputs={"input": input_name}, outputs=layer_outputs, weight_attr=string(kernel_weight_name), bias_attr=False, in_channels=k_size[3], out_channels=k_size[4], kernel_size=k_size[0:3], stride=strides[2:5], dilation=dilations[2:5], padding=string(pad_mode)) if data_format == "NDHWC": self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": node.name}, outputs=[node.name], perm=[0, 2, 3, 4, 1]) def BiasAdd(self, node): input = self.graph.get_input_node(node, 0) bias = self.graph.get_input_node(node, 1) self.paddle_graph.add_layer( kernel="paddle.add", inputs={"x": input.name, "y": bias.name}, outputs=[node.name]) def FusedBatchNorm(self, node): op_name = name_generator("bn", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] input = self.graph.get_input_node(node, 0) gamma = self.graph.get_input_node(node, 1) beta = self.graph.get_input_node(node, 2) moving_mean = self.graph.get_input_node(node, 3) moving_var = self.graph.get_input_node(node, 4) data_format = node.get_attr("data_format").decode() assert gamma.layer_type == "Const" assert beta.layer_type == "Const" assert moving_mean.layer_type == "Const" assert moving_var.layer_type == "Const" input_name = input.name if data_format == "NHWC": transpose_name = gen_name("batch_norm", "transpose") self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": input.name}, outputs=[transpose_name], perm=[0, 3, 1, 2]) input_name = transpose_name n, h, w, c = input.out_shapes[0] else: n, c, h, w = input.out_shapes[0] self.params["{}_{}".format(node.name, gamma.name)] = self.params[ gamma.name] self.params["{}_{}".format(node.name, beta.name)] = self.params[ beta.name] self.params["{}_{}".format(node.name, moving_mean.name)] = self.params[ moving_mean.name] self.params["{}_{}".format(node.name, moving_var.name)] = self.params[ moving_var.name] self.paddle_graph.add_layer( kernel="paddle.nn.BatchNorm", inputs={"input": input_name}, outputs=layer_outputs, num_channels=c, epsilon=node.get_attr("epsilon"), param_attr=string("{}_{}".format(node.name, gamma.name)), bias_attr=string("{}_{}".format(node.name, beta.name)), moving_mean_name=string("{}_{}".format(node.name, moving_mean.name)), moving_variance_name=string("{}_{}".format(node.name, moving_var.name)), is_test=True) if data_format == "NHWC": self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": node.name}, outputs=[node.name], perm=[0, 2, 3, 1]) def FusedBatchNormV3(self, node): self.FusedBatchNorm(node) def Mean(self, node): input = self.graph.get_input_node(node, 0) reduce_idx = self.graph.get_input_node(node, 1) assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" dims = reduce_idx.value.tolist() keep_dims = node.get_attr("keep_dims") self.paddle_graph.add_layer( kernel="paddle.mean", inputs={"x": input.name}, outputs=[node.name], axis=dims, keepdim=keep_dims) def Reshape(self, node): input = self.graph.get_input_node(node, 0) param = self.graph.get_input_node(node, 1) input_name = input.name if param.layer_type == "Const": shape = param.value.tolist() self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": input_name}, outputs=[node.name], shape=shape) else: self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": input_name, "shape": param.name}, outputs=[node.name]) if param.layer_type != "Const": out_shape = numpy.array(node.out_shapes[0]) if (out_shape > 0).any(): out_shape[out_shape < 0] = 0 self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": node.name}, outputs=[node.name], shape=out_shape.tolist()) def Pad(self, node): input = self.graph.get_input_node(node, 0) paddings = self.graph.get_input_node(node, 1) assert paddings.layer_type == "Const", "Padding should be Const" paddings = paddings.value.flatten().tolist() constant_values = 0 if len(node.layer.input) > 2: constant_values = self.graph.get_input_node(node, 2) assert constant_values.layer_type == "Const", "Padding should be Const" constant_values = constant_values.value self.paddle_graph.add_layer( kernel="paddle.nn.functional.pad", inputs={"x": input.name}, outputs=[node.name], pad=paddings, value=constant_values) def MirrorPad(self, node): self.Pad(node) def PadV2(self, node): self.Pad(node) def Squeeze(self, node): input = self.graph.get_input_node(node, 0) squeeze_dims = node.get_attr('squeeze_dims') self.paddle_graph.add_layer( kernel="paddle.squeeze", inputs={"x": input.name}, outputs=[node.name], axis=squeeze_dims) def Shape(self, node): input = self.graph.get_input_node(node, 0) input_name = input.name self.paddle_graph.add_layer( kernel="paddle.shape", inputs={"input": input_name}, outputs=[node.name]) def Size(self, node): input = self.graph.get_input_node(node, 0) input_name = input.name self.paddle_graph.add_layer( kernel="paddle.shape", inputs={"input": input_name}, outputs=[node.name]) self.paddle_graph.add_layer( kernel="paddle.prod", inputs={"x": node.name}, outputs=[node.name]) def Ceil(self, node): input = self.graph.get_input_node(node, 0) self.paddle_graph.add_layer( kernel="paddle.ceil", inputs={"x": input.name}, outputs=[node.name]) def ArgMax(self, node): input = self.graph.get_input_node(node, 0) axis = self.graph.get_input_node(node, 1) assert axis.layer_type == "Const", "ArgMax only support Const parameter" axis = axis.value self.paddle_graph.add_layer( kernel="paddle.argmax", inputs={"x": input.name}, outputs=[node.name], axis=axis) def TopKV2(self, node): input = self.graph.get_input_node(node, 0) k = self.graph.get_input_node(node, 1) assert k.layer_type == "Const", "ArgMax only support Const parameter" k = k.value sort = node.get_attr('sorted') self.paddle_graph.add_layer( kernel="paddle.topk", inputs={"x": input.name}, outputs=[node.name], k=k, sorted=sort) def MatMul(self, node): x = self.graph.get_input_node(node, 0) y = self.graph.get_input_node(node, 1) transpose_a = node.get_attr('transpose_a') transpose_b = node.get_attr('transpose_b') if transpose_a is None: transpose_a = node.get_attr('adj_x') if transpose_b is None: transpose_b = node.get_attr('adj_y') self.paddle_graph.add_layer( kernel="paddle.matmul", inputs={"x": x.name, "y": y.name}, outputs=[node.name], transpose_x=transpose_a, transpose_y=transpose_b) def BatchMatMul(self, node): return self.MatMul(node) def BatchMatMulV2(self, node): return self.MatMul(node) def DepthwiseConv2dNative(self, node): op_name = name_generator("conv", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] input = self.graph.get_input_node(node, 0) kernel = self.graph.get_input_node(node, 1) assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const" in_shape = input.out_shapes[0] k_size = kernel.out_shapes[0] strides = node.get_attr("strides") dilations = node.get_attr("dilations") data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() kernel_weight_name = op_name + ".weight" self.params[kernel_weight_name] = numpy.transpose(kernel.value, (2, 3, 0, 1)) input_name = input.name if data_format == "NHWC": in_shape = [in_shape[i] for i in [0, 3, 1, 2]] strides = [strides[i] for i in [0, 3, 1, 2]] dilations = [dilations[i] for i in [0, 3, 1, 2]] transpose_name = gen_name('depthwise_conv2d', 'transpose') self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": input.name}, outputs=[transpose_name], perm=[0, 3, 1, 2]) input_name = transpose_name self.paddle_graph.add_layer( kernel="paddle.nn.Conv2D", inputs={"input": input_name}, outputs=layer_outputs, weight_attr=string(kernel_weight_name), bias_attr=False, in_channels=in_shape[1], out_channels=k_size[2], kernel_size=k_size[0:2], stride=strides[2:4], dilation=dilations[2:4], groups=k_size[3] * in_shape[1], padding=string(pad_mode)) if data_format == "NHWC": self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": node.name}, outputs=[node.name], perm=[0, 2, 3, 1]) def AvgPool(self, node): input = self.graph.get_input_node(node, 0) k_size = node.get_attr("ksize") strides = node.get_attr("strides") data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() input_name = input.name if data_format == "NHWC": transpose_name = gen_name("avg_pool", "transpose") self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": input.name}, outputs=[transpose_name], perm=[0, 3, 1, 2]) strides = [strides[i] for i in [0, 3, 1, 2]] k_size = [k_size[i] for i in [0, 3, 1, 2]] input_name = transpose_name op_name = name_generator("pool", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] # TODO(syf): The op has diff. self.paddle_graph.add_layer( kernel="paddle.nn.AvgPool2D", inputs={"input": input_name}, outputs=layer_outputs, kernel_size=k_size[2:4], stride=strides[2:4], padding=string(pad_mode)) if data_format == "NHWC": self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": node.name}, outputs=[node.name], perm=[0, 2, 3, 1]) def Pack(self, node): inputs_list = list() for i in range(len(node.inputs)): inputs_list.append(self.graph.get_input_node(node, i)) input_names = [i.name for i in inputs_list] axis = node.get_attr("axis") self.paddle_graph.add_layer( kernel="paddle.stack", inputs={"x": input_names}, outputs=[node.name], axis=axis) if len(node.out_shapes[0]) == 1: self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": node.name}, outputs=[node.name], shape=[-1]) def Unpack(self, node): input = self.graph.get_input_node(node, 0) axis = node.get_attr("axis") num = node.get_attr("num") shape = input.out_shapes[0] input_name = input.name if len(shape) == 1: if shape[0] > 0 and num == shape[0]: self.paddle_graph.add_layer( kernel="paddle.unsqueeze", inputs={"x": input.name}, outputs=[node.name], axis=[0]) input_name = node.name axis = 1 else: raise Exception("Unexpected situation happend in Unpack OP") layer_outputs = [ "{}_p{}".format(node.layer_name, i) for i in range(num) ] if len(layer_outputs) == 1: layer_outputs[0] = "[{}]".format(node.layer_name) self.paddle_graph.add_layer( kernel="paddle.unstack", inputs={"x": input_name}, outputs=layer_outputs, axis=axis, num=num) def ConcatV2(self, node): inputs_list = list() for i in range(len(node.inputs) - 1): inputs_list.append(self.graph.get_input_node(node, i)) axis = self.graph.get_input_node(node, -1) assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const" axis = axis.value if axis < 0: axis += len(inputs_list[0].out_shapes[0]) input_names = [i.name for i in inputs_list] self.paddle_graph.add_layer( kernel="paddle.concat", inputs={"x": input_names}, outputs=[node.name], axis=axis) def Concat(self, node): inputs_list = list() for i in range(1, len(node.inputs)): inputs_list.append(self.graph.get_input_node(node, i)) axis = self.graph.get_input_node(node, 0) assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const" axis = axis.value if axis < 0: axis += len(inputs_list[0].out_shapes[0]) input_names = [i.name for i in inputs_list] self.paddle_graph.add_layer( kernel="paddle.concat", inputs={"x": input_names}, outputs=[node.name], axis=axis) def AddN(self, node): inputs_list = list() for i in range(len(node.inputs) - 1): inputs_list.append(self.graph.get_input_node(node, i)) input_names = [i.name for i in inputs_list] self.paddle_graph.add_layer( kernel="paddle.add_n", inputs={"inputs": input_names}, outputs=[node.name]) def StridedSlice(self, node): input = self.graph.get_input_node(node, 0) begin = self.graph.get_input_node(node, 1) end = self.graph.get_input_node(node, 2) strides = self.graph.get_input_node(node, 3) if strides.layer_type == "Const": strides = strides.value.tolist() else: strides = self.decoder.infer_tensor(strides) if begin.layer_type == "Const": begin = begin.value.tolist() else: begin = self.decoder.infer_tensor(begin) if end.layer_type == "Const": end = end.value.tolist() else: end = self.decoder.infer_tensor(end) assert len(set(strides)) == 1 and strides[ 0] == 1, "Only support strides be 1 in StridedSlice OP" if len(begin) < len(input.out_shapes[0]): begin = begin + [0] * (len(input.out_shapes[0]) - len(begin)) if len(end) < len(input.out_shapes[0]): end = end + [0] * (len(input.out_shapes[0]) - len(end)) for i in range(len(end)): if end[i] == 0: end[i] = 999999 begin_mask = node.get_attr('begin_mask') end_mask = node.get_attr('end_mask') ellipsis_mask = node.get_attr('ellipsis_mask') new_axis_mask = node.get_attr('new_axis_mask') shrink_axis_mask = node.get_attr('shrink_axis_mask') assert ellipsis_mask == 0, "(OP:{} Name:{})Only support ellipsis_mask be 0[now: {}] n StridedSlice OP".format( node.layer_type, node.layer.name, ellipsis_mask) # TODO codes without validation # Use it carefully new_begin = list() new_end = list() new_axes = list() shrink_axes = list() for i, item in enumerate(begin): mask = (new_axis_mask >> i) & 1 if mask != 0: new_axes.append(i) continue mask = (shrink_axis_mask >> i) & 1 if mask != 0: shrink_axes.append(i) mask = (begin_mask >> i) & 1 if mask != 0: new_begin.append(0) else: new_begin.append(item) mask = (end_mask >> i) & 1 if mask != 0: new_end.append(999999) else: new_end.append(end[i]) if input.dtype == "bool": self.paddle_graph.add_layer( "paddle.cast", inputs={"x": input.name}, outputs=[input.name], dtype=string("int32")) self.paddle_graph.add_layer( kernel="paddle.slice", inputs={"input": input.name}, outputs=[node.name], axes=[i for i in range(len(new_begin))], starts=new_begin, ends=new_end) if input.dtype == "bool": self.paddle_graph.add_layer( "paddle.cast", inputs={"x": node.name}, outputs=[node.name], dtype=string("bool")) if len(new_axes) > 0: self.paddle_graph.add_layer( kernel="paddle.unsqueeze", inputs={"x": node.name}, outputs=[node.name], axis=new_axes) if len(shrink_axes) > 0: if len(input.out_shapes[0]) + len(new_axes) <= 1: pass else: self.paddle_graph.add_layer( kernel="paddle.squeeze", inputs={"x": node.name}, outputs=[node.name], axis=shrink_axes) def Prod(self, node): input = self.graph.get_input_node(node, 0) reduction_indices = self.graph.get_input_node(node, 1) assert reduction_indices.layer_type == "Const" keep_dims = node.get_attr('keep_dims') axis = reduction_indices.value self.paddle_graph.add_layer( kernel="paddle.prod", inputs={"x": input.name}, outputs=[node.layer_name], keepdim=keep_dims, axis=axis) def Split(self, node): dim = self.graph.get_input_node(node, 0) input = self.graph.get_input_node(node, 1) assert dim.layer_type == "Const" num_split = node.get_attr('num_split') dim = dim.value self.paddle_graph.add_layer( kernel="paddle.split", inputs={"x": input.name}, outputs=[ "{}_p{}".format(node.layer_name, i) for i in range(num_split) ], num_or_sections=num_split, axis=dim) def SplitV(self, node): input = self.graph.get_input_node(node, 0) size_splits = self.graph.get_input_node(node, 1) assert size_splits.layer_type == "Const", "size_splits of SplitV OP should be Const" size_splits = size_splits.value.tolist() dim = self.graph.get_input_node(node, 2) assert dim.layer_type == "Const", "dim of SplitV OP should be Const" dim = dim.value self.paddle_graph.add_layer( kernel="paddle.split", inputs={"x": input.name}, outputs=[ "{}_p{}".format(node.layer_name, i) for i in range(len(size_splits)) ], num_or_sections=size_splits, axis=dim) def Slice(self, node): input = self.graph.get_input_node(node, 0) begin = self.graph.get_input_node(node, 1) size = self.graph.get_input_node(node, 2) inputs = {"x": input.name} attrs = {} if begin.layer_type == "Const": begin = begin.value.tolist() attrs['offsets'] = begin else: begin = self.decoder.infer_tensor( begin, use_diff_inputs=False).tolist() attrs['offsets'] = begin if size.layer_type == "Const": size = size.value.tolist() attrs['shape'] = size else: shape = size.out_shapes[0] reshape_name = gen_name("slice", "reshape") self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": size.name}, outputs=[reshape_name], shape=shape) inputs['shape'] = reshape_name self.paddle_graph.add_layer( kernel="paddle.crop", inputs=inputs, outputs=[node.name], **attrs) def ResizeNearestNeighbor(self, node): input = self.graph.get_input_node(node, 0) resize_shape = self.graph.get_input_node(node, 1) data_format = "NHWC" inputs = {"x": input.name} attrs = { "align_corners": node.get_attr("align_corners"), "mode": string("nearest"), "align_mode": 1 } if resize_shape.layer_type == "Const": resize_shape = resize_shape.value.tolist() attrs["size"] = resize_shape else: shape = resize_shape.out_shapes[0] reshape_name = gen_name("resize_nearest", "reshape") self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": resize_shape.name}, outputs=[reshape_name], shape=shape) inputs["size"] = reshape_name if data_format == "NHWC": transpose_name = gen_name("resize_nearest", "reshape") self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": input.name}, outputs=[transpose_name], perm=[0, 3, 1, 2]) inputs["x"] = transpose_name self.paddle_graph.add_layer( kernel="paddle.nn.functional.interpolate", inputs=inputs, outputs=[node.name], **attrs) if data_format == "NHWC": self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": node.name}, outputs=[node.name], perm=[0, 2, 3, 1]) def ResizeBilinear(self, node): input = self.graph.get_input_node(node, 0) resize_shape = self.graph.get_input_node(node, 1) data_format = "NHWC" inputs = {"x": input.name} attrs = { "align_corners": node.get_attr("align_corners"), "mode": string("bilinear"), "align_mode": 1 } if resize_shape.layer_type == "Const": resize_shape = resize_shape.value.tolist() attrs["size"] = resize_shape else: shape = resize_shape.out_shapes[0] reshape_name = gen_name("resize_bilinear", "reshape") self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": resize_shape.name}, outputs=[reshape_name], shape=shape) inputs["size"] = reshape_name if data_format == "NHWC": transpose_name = gen_name("resize_bilinear", "reshape") self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": input.name}, outputs=[transpose_name], perm=[0, 3, 1, 2]) inputs["x"] = transpose_name self.paddle_graph.add_layer( kernel="paddle.nn.functional.interpolate", inputs=inputs, outputs=[node.name], **attrs) if data_format == "NHWC": self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": node.name}, outputs=[node.name], perm=[0, 2, 3, 1]) def Cast(self, node): input = self.graph.get_input_node(node, 0) dtype = node.dtype self.paddle_graph.add_layer( kernel="paddle.cast", inputs={"x": input.name}, outputs=[node.name], dtype=string(dtype)) def Sum(self, node): input = self.graph.get_input_node(node, 0) reduce_idx = self.graph.get_input_node(node, 1) assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" keep_dims = node.get_attr("keep_dims") dim = reduce_idx.value.tolist() self.paddle_graph.add_layer( kernel="paddle.sum", inputs={"x": input.name}, outputs=[node.name], axis=dim, keepdim=keep_dims) def Max(self, node): input = self.graph.get_input_node(node, 0) reduce_idx = self.graph.get_input_node(node, 1) assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" keep_dims = node.get_attr("keep_dims") dim = reduce_idx.value.tolist() self.paddle_graph.add_layer( kernel="paddle.max", inputs={"x": input.name}, outputs=[node.name], axis=dim, keepdim=keep_dims) def RandomUniform(self, node): shape = self.graph.get_input_node(node, 0) if shape.layer_type == "Const": shape = shape.value.tolist() self.paddle_graph.add_layer( kernel="paddle.uniform", inputs={}, outputs=[node.name], shape=shape, min=0.0, max=0.9999) else: self.paddle_graph.add_layer( kernel="paddle.uniform", inputs={'shape': shape.name}, outputs=[node.name], min=0.0, max=0.9999) def Conv2DBackpropInput(self, node): op_name = name_generator("conv", self.nn_name2id) output_name = node.name layer_outputs = [op_name, output_name] out_shape = self.graph.get_input_node(node, 0) kernel = self.graph.get_input_node(node, 1) input = self.graph.get_input_node(node, 2) assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const" if out_shape.layer_type == "Const": out_shape = out_shape.value.tolist() else: out_shape = self.decoder.infer_tensor( out_shape, out_shape=node.out_shapes[0]) in_shape = input.out_shapes[0] if in_shape.count(-1) > 2: in_shape = self.decoder.infer_tensor( input, use_diff_inputs=False).shape k_size = kernel.out_shapes[0] if k_size.count(-1) > 2: k_size = self.decoder.infer_tensor( kernel, use_diff_inputs=False).shape pad_mode = node.get_attr("padding").decode() strides = node.get_attr("strides") dilations = node.get_attr("dilations") data_format = node.get_attr("data_format").decode() kernel_name = op_name + ".weight" self.params[kernel_name] = numpy.transpose(kernel.value, (3, 2, 0, 1)) input_name = input.name if data_format == "NHWC": in_shape = [in_shape[i] for i in [0, 3, 1, 2]] strides = [strides[i] for i in [0, 3, 1, 2]] dilations = [dilations[i] for i in [0, 3, 1, 2]] transpose_name = gen_name("conv2dbackpropinput", "transpose") self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": input.name}, outputs=[transpose_name], perm=[0, 3, 1, 2]) input_name = transpose_name self.paddle_graph.add_layer( "self.create_parameter", inputs={}, outputs=["{}_{}".format(node.name, kernel_name).replace(".", "_")], shape=self.params[kernel_name].shape, attr=string(kernel_name)) self.paddle_graph.add_layer( kernel="paddle.nn.functional.conv2d_transpose", inputs={ "x": input_name, "weight": "{}_{}".format(node.name, kernel_name).replace(".", "_") }, outputs=[node.name], bias=None, stride=strides[2:4], dilation=dilations[2:4], padding=string(pad_mode), output_size=out_shape[1:3]) if data_format == "NHWC": self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": node.name}, outputs=[node.name], perm=[0, 2, 3, 1]) def Tile(self, node): input = self.graph.get_input_node(node, 0) repeat_times = self.graph.get_input_node(node, 1) inputs = {"x": input.name} attr = dict() in_shape = input.out_shapes[0] if repeat_times.layer_type == "Const": repeat_times = repeat_times.value.tolist() attr["repeat_times"] = repeat_times else: inputs["repeat_times"] = repeat_times.name self.paddle_graph.add_layer( kernel="paddle.tile", inputs=inputs, outputs=[node.name], **attr) def Range(self, node): start = self.graph.get_input_node(node, 0) limit = self.graph.get_input_node(node, 1) delta = self.graph.get_input_node(node, 2) inputs = dict() attr = dict() dtype = 'int32' if start.dtype.startswith('float'): dtype = start.dtype if start.layer_type == "Const": attr["start"] = start.value else: inputs["start"] = start.name if limit.dtype.startswith('float'): dtype = limit.dtype if limit.layer_type == "Const": attr["end"] = limit.value else: inputs["end"] = limit.name if delta.dtype.startswith('float'): dtype = delta.dtype if delta.layer_type == "Const": attr["step"] = delta.value else: inputs["step"] = delta.name node.set_dtype(dtype) attr["dtype"] = string(node.dtype) self.paddle_graph.add_layer( kernel="paddle.arange", inputs=inputs, outputs=[node.name], **attr) def SquaredDifference(self, node): x = self.graph.get_input_node(node, 0) y = self.graph.get_input_node(node, 1) inputs = {"x": x.name, "y": y.name} x_shape = x.out_shapes[0] y_shape = y.out_shapes[0] # TODO(syf) layer_id = self.paddle_graph.add_layer( "paddle.subtract", inputs=inputs, outputs=[node.name]) self.paddle_graph.layers[layer_id].input_shapes = { "x": x_shape, "y": y_shape } inputs = {"x": node.name, "y": node.name} x_shape = node.out_shapes[0] y_shape = node.out_shapes[0] layer_id = self.paddle_graph.add_layer( "paddle.multiply", inputs=inputs, outputs=[node.name]) self.paddle_graph.layers[layer_id].input_shapes = { "x": x_shape, "y": y_shape } def OneHot(self, node): input = self.graph.get_input_node(node, 0) depth = self.graph.get_input_node(node, 1) on_value = self.graph.get_input_node(node, 2) off_value = self.graph.get_input_node(node, 3) assert depth.layer_type == 'Const', 'Parameter depth should be Const in OneHot' assert on_value.layer_type == 'Const', 'Parameter on_value should be Const in OneHot' assert off_value.layer_type == 'Const', 'Parameter off_value should be Const in OneHot' attr = {'depth': depth.value} on_value = on_value.value off_value = off_value.value assert math.fabs(on_value - 1.0) < 1e-06, "on_value should be 1 in OneHot" assert math.fabs(off_value - 0.0) < 1e-06, "off_value should be 0 in OneHot" self.paddle_graph.add_layer( "paddle.nn.functional.one_hot", inputs={"x": input.name}, outputs=[node.name], num_classes=depth.value) def Pow(self, node): x = self.graph.get_input_node(node, 0) factor = self.graph.get_input_node(node, 1) inputs = {"x": x.name} attr = dict() if factor.layer_type == 'Const': attr["y"] = factor.value.tolist() else: inputs["y"] = factor.name self.paddle_graph.add_layer( "paddle.pow", inputs=inputs, outputs=[node.name], **attr) def All(self, node): input = self.graph.get_input_node(node, 0) reduce_idx = self.graph.get_input_node(node, 1) assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]" attr = dict() attr["axis"] = reduce_idx.value.tolist() attr["keepdim"] = node.get_attr("keep_dims") input_name = input.name if input.dtype != "bool": input_name = gen_name("all", "cast") self.paddle_graph.add_layer( "paddle.cast", inputs={"x": input.name}, outputs=[input_name], dtype=string("bool")) self.paddle_graph.add_layer( "paddle.all", inputs={"x": input_name}, outputs=[node.name], **attr) node.layer.attr['dtype'].type = 10 def GatherV2(self, node): embeddings = self.graph.get_input_node(node, 0) index = self.graph.get_input_node(node, 1) axis = self.graph.get_input_node(node, 2) assert axis.layer_type == 'Const', "Only support Const parameter[axis]" axis = axis.value index_name = index.name if len(index.out_shapes[0]) != 1: reshape_name = gen_name("gather", "reshape") index_name = reshape_name self.paddle_graph.add_layer( "paddle.reshape", inputs={"x": index.name}, outputs=[reshape_name], shape=[-1]) inputs = {'x': embeddings.name, 'index': index_name} self.paddle_graph.add_layer( "paddle.gather", inputs=inputs, outputs=[node.name], axis=axis) if len(index.out_shapes[0]) != 1: out_shape = node.out_shapes[0] self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": node.name}, outputs=[node.name], shape=out_shape) def GatherNd(self, node): x = self.graph.get_input_node(node, 0) index = self.graph.get_input_node(node, 1) inputs = {'x': x.name, 'index': index.name} self.paddle_graph.add_layer( "paddle.gather_nd", inputs=inputs, outputs=[node.name]) def ExpandDims(self, node): x = self.graph.get_input_node(node, 0, copy=True) y = self.graph.get_input_node(node, 1, copy=True) inputs = {"x": x.name} attr = dict() if y.layer_type == 'Const': dim = y.value.tolist() if not isinstance(dim, list): dim = [dim] attr['axis'] = dim else: inputs['axis'] = y.name self.paddle_graph.add_layer( "paddle.unsqueeze", inputs=inputs, outputs=[node.name], **attr) def ReverseV2(self, node): x = self.graph.get_input_node(node, 0) axis = self.graph.get_input_node(node, 1) inputs = {"x": x.name} attr = dict() if axis.layer_type == 'Const': axis = axis.value.tolist() if not isinstance(axis, list): axis = [axis] attr['axis'] = axis else: inputs['axis'] = axis.name self.paddle_graph.add_layer( "paddle.flip", inputs=inputs, outputs=[node.name], **attr) def BatchToSpaceND(self, node): ''' reshape->transpose->reshape->crop ''' x = self.graph.get_input_node(node, 0) block_shape = self.graph.get_input_node(node, 1) crops = self.graph.get_input_node(node, 2) if block_shape.layer_type == "Const": block_shape = block_shape.value.tolist() if crops.layer_type == "Const": crops = crops.value.tolist() data_format = x.get_attr("data_format").decode() if data_format == "NHWC": n, h, w, c = x.out_shapes[0] else: n, c, h, w = x.out_shapes[0] input_name = x.name #reshape shape = block_shape + [-1, h, w, c] reshape_name = gen_name("batch_to_space", "reshape") self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": input_name}, outputs=[reshape_name], shape=shape) #transpose perm = [len(block_shape)] + list(j for i in range(len(block_shape)) for j in (i + len(block_shape) + 1, i)) +\ list(i + 2*len(block_shape) + 1 for i in range(len(x.out_shapes[0]) - len(block_shape) - 1)) transpose_name = gen_name("batch_to_space", "transpose") self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": reshape_name}, outputs=[transpose_name], perm=perm) #reshape shape = [-1] + list(i * j for i, j in zip(block_shape, x.out_shapes[0][ 1:])) + x.out_shapes[0][1 + len(block_shape):] reshape_name = gen_name("batch_to_space", "reshape") self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": transpose_name}, outputs=[reshape_name], shape=shape) #crop attrs = {} crop_shape = shape crop_offsets = [0] * len(shape) for i in range(len(crops)): crop_shape[i + 1] = crop_shape[i + 1] - crops[i][0] - crops[i][1] crop_offsets[i + 1] = crops[i][0] attrs['shape'] = crop_shape attrs['offsets'] = crop_offsets self.paddle_graph.add_layer( kernel="paddle.crop", inputs={"x": reshape_name}, outputs=[node.name], **attrs) def SpaceToBatchND(self, node): ''' zero-pad->reshape->transpose->reshape ''' x = self.graph.get_input_node(node, 0) block_shape = self.graph.get_input_node(node, 1) paddings = self.graph.get_input_node(node, 2) if block_shape.layer_type == "Const": block_shape = block_shape.value.tolist() if paddings.layer_type == "Const": paddings = paddings.value.flatten().tolist() input_name = x.name #zero-pad constant_values = 0 pad_name = gen_name("space_to_batch", "pad") paddings = [0, 0] + paddings + [0, 0] self.paddle_graph.add_layer( kernel="paddle.nn.functional.pad", inputs={"x": input_name}, outputs=[pad_name], pad=paddings, value=constant_values) #reshape n, h, w, c = x.out_shapes[0] h = h + paddings[2] + paddings[3] w = w + paddings[4] + paddings[5] shape = [ n, h // block_shape[0], block_shape[0], w // block_shape[1], block_shape[1], c ] reshape_name = gen_name("space_to_batch", "reshape") self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": pad_name}, outputs=[reshape_name], shape=shape) #transpose transpose_name = gen_name("space_to_batch", "transpose") self.paddle_graph.add_layer( kernel="paddle.transpose", inputs={"x": reshape_name}, outputs=[transpose_name], perm=[2, 4, 0, 1, 3, 5]) #reshape shape = [-1, h // block_shape[0], w // block_shape[1], c] self.paddle_graph.add_layer( kernel="paddle.reshape", inputs={"x": transpose_name}, outputs=[node.name], shape=shape)