# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from auto_scan_test import OPConvertAutoScanTest from hypothesis import reproduce_failure import hypothesis.strategies as st import onnx from onnx import helper from onnx import TensorProto import numpy as np import unittest class TestUnsqueezeConvert0(OPConvertAutoScanTest): """ ONNX op: Unsqueeze OPset version: 7~12 """ def sample_convert_config(self, draw): input_shape = draw( st.lists( st.integers( min_value=2, max_value=6), min_size=2, max_size=5)) input_dtype = draw( st.sampled_from(["int32", "int64", "float32", "float64"])) axis = draw( st.integers( min_value=-len(input_shape), max_value=len(input_shape) - 1)) if len(input_shape) == 5: axis = [0] if len(input_shape) == 4: axis = [0, 1] if len(input_shape) == 3: axis = [1, 2, 3] if len(input_shape) == 2: if draw(st.booleans()): axis = [0, 1, 2] else: axis = [1, 3] config = { "op_names": ["Unsqueeze"], "test_data_shapes": [input_shape], "test_data_types": [[input_dtype]], "inputs_shape": [input_shape], "min_opset_version": 7, "max_opset_version": 12, "inputs_name": ["x"], "outputs_name": ["y"], "delta": 1e-4, "rtol": 1e-4 } attrs = {"axes": axis, } return (config, attrs) def test(self): self.run_and_statis(max_examples=30) class TestUnsqueezeConvert1(OPConvertAutoScanTest): """ ONNX op: Unsqueeze OPset version: 13~15 """ def sample_convert_config(self, draw): input_shape = draw( st.lists( st.integers( min_value=2, max_value=6), min_size=2, max_size=5)) input_dtype = draw( st.sampled_from(["int32", "int64", "float32", "float64"])) def generator_axis(): axis = list() if len(input_shape) == 5: axis = [0] if len(input_shape) == 4: axis = [0, 1] if len(input_shape) == 3: axis = [1, 2, 3] if len(input_shape) == 2: if draw(st.booleans()): axis = [0, 1, 2] else: axis = [1, 3] axis = np.array(axis) print("axis:", axis) return axis config = { "op_names": ["Unsqueeze"], "test_data_shapes": [input_shape, generator_axis], "test_data_types": [[input_dtype], ["int64"]], "inputs_shape": [], "min_opset_version": 13, "max_opset_version": 15, "inputs_name": ["x", "axes"], "outputs_name": ["y"], "delta": 1e-4, "rtol": 1e-4, "enable_onnx_checker": False, } attrs = {} return (config, attrs) def test(self): self.run_and_statis(max_examples=30) if __name__ == "__main__": unittest.main()