# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from x2paddle.op_mapper.onnx2paddle.opsets.opset9 import OpSet9 from x2paddle.core.op_mapper import OpMapper from x2paddle.op_mapper.onnx_opsets.custom_layer import * from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode class ONNXOpMapper(OpMapper): def __init__(self, decoder): super(ONNXOpMapper, self).__init__() self.support_op_sets = [9, ] self.default_op_set = 9 self.graph = decoder.graph self.opset = self.create_opset(decoder) if not self.op_checker(): raise Exception("Model are not supported yet.") #mapping op print("Total nodes: {}".format( sum([ isinstance(node, ONNXGraphNode) for name, node in self.graph.node_map.items() ]))) print("Nodes converting ...") for node_name in self.graph.topo_sort: node = self.graph.get_node(node_name) op = node.layer_type if hasattr(self.opset, op): func = getattr(self.opset, op) func(node) elif op in self.opset.default_op_mapping: self.opset.directly_map(node) elif op in custom_layers: self.opset.deal_custom_layer(node) elif op in self.opset.elementwise_ops: self.opset.elementwise_map(node) print("Nodes converted.") self.weights = self.opset.weights self.omit_nodes = self.opset.omit_nodes self.used_custom_layers = self.opset.used_custom_layers def op_checker(self): unsupported_ops = set() for node_name in self.graph.topo_sort: node = self.graph.get_node(node_name) op = node.layer_type if not hasattr(self.opset, op) and \ op not in self.opset.default_op_mapping and \ op not in custom_layers and \ op not in self.opset.elementwise_ops: unsupported_ops.add(op) if len(unsupported_ops) == 0: return True else: print("There are {} ops not supported yet, list as below".format( len(unsupported_ops))) for op in unsupported_ops: print(op) return False def create_opset(self, decoder): run_op_set = self.default_op_set opset = '' if decoder.op_set in self.support_op_sets: opset = 'OpSet' + str(decoder.op_set) elif decoder.op_set < self.default_op_set: opset = 'OpSet' + str(self.default_op_set) else: for op_set in self.support_op_sets: if decoder.op_set > op_set: run_op_set = op_set else: break opset = 'OpSet' + str(run_op_set) print( 'Now, onnx2paddle support convert onnx model opset_verison {},' 'opset_verison of your onnx model is {}, automatically treated as op_set: {}.' .format(self.support_op_sets, decoder.op_set, run_op_set)) return eval(opset)(decoder)