# X2Paddle支持OP列表 > 目前X2Paddle支持70+的TensorFlow OP,30+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。 **注:** 目前,部分OP暂未支持,如您在转换过程中出现OP不支持的情况,可自行添加或反馈给我们。欢迎通过[ISSUE反馈](https://github.com/PaddlePaddle/X2Paddle/issues/new)的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:) ## TensorFlow | 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP | |------|------|------|------|------|------|------|------| | 1 | Relu | 2 | Relu6 | 3 | Shape | 4 | Abs | | 5 | Sigmoid | 6 | Exp | 7 | Rsqrt | 8 | swish_f32 | | 9 | Tanh | 10 | LeakyRelu | 11 | Add | 12 | RealDiv | | 13 | Sub | 14 | Maximum | 15 | Mul | 16 | FloorDiv | | 17 | Placeholder | 18 | Const | 19 | Transpose | 20 | FusedBatchNorm | | 21 | Conv2D | 22 | BiasAdd | 23 | MaxPool | 24 | DepthwiseConv2dNative | | 25 | Reshape | 26 | AvgPool | 27 | SplitV | 28 | SquaredDifference | | 29 | Tile | 30 | Pack | 31 | Pad | 32 | ResizeBilinear | | 33 | Mean | 34 | MatMul | 35 | ArgMax | 36 | StridedSlice | | 37 | Slice | 38 | Sum | 39 | Max | 40 | Conv2DBackpropInput | | 41 | Cast | 42 | Split | 43 | Squeeze | 44 | ResizeNearestNeighbor | | 45 | Softmax | 46 | Range | 47 | ConcatV2 | 48 | MirrorPad | | 49 | Identity | 50 | GreaterEqual | 51 | StopGradient | 52 | Minimum | | 53 | RadnomUniform | 54 | Fill | 55 | Floor | 56 | DepthToSpace | | 57 | Sqrt | 58 | Softplus | 59 | Erf | 60 | AddV2 | | 61 | LessEqual | 62 | BatchMatMul | 63 | BatchMatMulV2 | 64 | ExpandDims | | 65 | BatchToSpaceND | 66 | SpaceToBatchND | 67 | OneHot | 68 | Pow | | 69 | All | 70 | GatherV2 | 71 | IteratorV2 | 72 | Neg | | 73 | Greater | 74 | FloorMod | 75 | LogicalAdd | 76 | Prod | | 77 | Equal | 78 | Conv3D | 79 | Ceil | 80 | AddN | | 81 | DivNoNan | 82 | Where | 83 | MirrorPad | 84 | Size | | 85 | TopKv2 | | | | | | | ## Caffe | 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP | |------|------|------|------|------|------|------|------| | 1 | Input | 2 | Convolution | 3 | Deconvolution | 4 | Pooling | | 5 | LRN | 6 | InnerProduct | 7 | Softmax | 8 | Slice | | 9 | Concat | 10 | PReLU | 11 | Accuracy | 12 | Eltwise | | 13 | BatchNorm | 14 | Scale | 15 | Reshape | 16 | ArgMax | | 17 | Crop | 18 | Flatten | 19 | Power | 20 | Reduction | | 21 | Axpy | 22 | ROIPolling | 23 | Permute | 24 | DetectionOutput | | 25 | Normalize | 26 | Select | 27 | ShuffleChannel | 28 | ConvolutionDepthwise | | 29 | ReLU | 30 | AbsVal | 31 | Sigmoid | 32 | TanH | | 33 | ReLU6 | 34 | Upsample | ## ONNX | 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP | |------|------|------|------|------|------|------|------| | 1 | Relu | 2 | LeakyRelu | 3 | Elu | 4 | ThresholdedRelu | | 5 | Prelu | 6 | Tanh | 7 | Shrink | 8 | Sigmoid | | 9 | Pow | 10 | Softplus | 11 | Softsign | 12 | HardSigmoid | | 13 | Exp | 14 | Add | 15 | Div | 16 | Sub | | 17 | Mul | 18 | Shape | 19 | Clip | 20 | AveragePool | | 21 | Sqrt | 22 | ReduceSum | 23 | ReduceMin | 24 | ReduceMean | | 25 | Constant | 26 | Pad | 27 | Unsqueeze | 28 | Resize | | 29 | Upsample | 30 | Expand | 31 | Gather | 32 | Slice | | 33 | Cast | 34 | Split | 35 | Reshape | 36 | ConstantOfShape | | 37 | Ceil | 38 | Concat | 39 | Flatten | 40 | ConvTranspose | | 41 | MatMul | 42 | Sum | 43 | Transpose | 44 | BatchNormalization | | 45 | Squeeze | 46 | Equal | 47 | Identity | 48 | GlobalAveragePool | | 49 | MaxPool | 50 | Conv | 51 | Gemm | 52 | NonZero | | 53 | Abs | 54 | Floor | ## PyTorch Aten: | 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP | |------|------|------|------|------|------|------|------| | 1 | aten::abs | 2 | aten::adaptive_avg_pool2d | 3 | aten::addmm | 4 | aten::add | | 5 | aten::add\_ | 6 | aten::\_\_and\_\_ | 7 | aten::append | 8 | aten::arange | | 9 | aten::avg\_pool2d | 10 | aten::avg\_pool3d | 11 | aten::avg_pool1d | 12 | aten::batch_norm | | 13 | aten::cat | 14 | aten::chunk | 15 | aten::clamp | 16 | aten::\_\_contains\_\_ | | 17 | aten::constant\_pad\_nd | 18 | aten::contiguous | 19 | aten::conv2d | 20 | aten::\_convolution | | 21 | aten::conv_transpose2d | 22 | aten::cos | 23 | aten::cumsum | 24 | aten::detach | | 25 | aten::dict | 26 | aten::dim | 27 | aten::div\_ | 28 | aten::div | | 29 | aten::dropout | 30 | aten::dropout_ | 31 | aten::embedding | 32 | aten::eq | | 33 | aten::exp | 34 | aten::expand | 35 | aten::expand_as | 36 | aten::eye | | 37 | aten::feature_dropout | 38 | aten::flatten | 39 | aten::Float | 40 | aten::floor | | 41 | aten::floordiv | 42 | aten::floor_divide | 43 | aten::full_like | 44 | aten::gather | | 45 | aten::gelu | 46 | aten::\_\_getitem\_\_ | 47 | aten::gt | 48 | aten::hardtanh\_ | | 49 | aten::index\_select | 50 | aten::Int | 51 | aten::\_\_is\_\_ | 52 | aten::\_\_isnot\_\_ | | 53 | aten::layer\_norm | 54 | aten::le |55|aten::leaky\_relu\_|56|aten::len| | 57 | aten::log | 58 | aten::lt |59|aten::masked\_fil\l_|60|aten::masked\_fill| | 61 | aten::max | 62 | aten::max\_pool2d |63|aten::matmul|64|aten\_min| | 65 | aten::mean | 66 | aten::meshgrid |67|aten::mul|68|aten::mul\_| | 69 | aten::ne | 70 | aten::neg |71|aten::\_\_not\_\_|72|aten::ones| | 73 | aten::permute | 74 | aten::pow |75|aten::relu|76|aten::relu\_| | 77 | aten::relu6 | 78 | aten::repeat |79|aten::reshape|80|aten::rsub| | 81 | aten::ScalarImplicit | 82 | aten::select |83|aten::\_set\_item|84|aten::sigmoid| | 85 | aten::sin | 86 | aten::size |87|aten::slice|88|aten::softmax| | 89 | aten::softplus | 90 | aten::sqrt |91|aten::squeeze|92|aten::stack| | 93 | aten::sub | 94 | aten::t |95|aten::tanh|96|aten::split| | 97 | aten::transpose | 98 | aten::to |99|aten::type\_as|100|aten::unsqueeze| | 101 | aten::upsample\_bilinear2d | 102 | aten::values |103|aten::view|104|aten::warn| | 105 | aten::where | 106 | aten::zeros |107|aten::zeros\_like||| Prim: | 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP | |------|------|------|------|------|------|------|------| | 1 | prim::Constant | 2 | prim::data | 3 | prim::DictConstruct | 4 | prim::GetAttr | | 5 | prim::If | 6 | prim::ListConstruct | 7 | prim::ListUnpack | 8 | prim::Loop | | 9 | prim::min | 10 | prim::NumToTensor | 11 | prim::RaiseException | 12 | prim::requires\_grad | | 13 | prim::SetAttr | 14 | prim::shape | 15 | prim::TupleConstruct | 16 | prim::TupleUnpack | | 17 | prim::unchecked\_cast | 18 | prim::Uninitialized | ||||