## Pooling ### [Pooling](http://caffe.berkeleyvision.org/tutorial/layers/pooling.html) ``` layer{ name: "pool" type: "Pooling" bottom: "data" top: "pool" pooling_param { pool: MAX kernel_size: 3 # 必填项 stride: 1 pad: 0 } } ``` ### [paddle.fluid.layers.pool2d](http://paddlepaddle.org/documentation/docs/zh/1.4/api_cn/layers_cn.html#permalink-119-pool2d) ```python paddle.fluid.layers.pool2d( input, pool_size, pool_type='max', pool_stride=1, pool_padding=0, global_pooling=False, use_cudnn=True, ceil_mode=False, name=None, exclusive=True ) ``` ### 功能差异 #### 输出大小 Caffe:输出大小计算方式如下所示, ``` H_out = (H_in-ksize[0]+2*padding[0]+strides[0]-1)/strides[0]+1 W_out = (W_in-ksize[1]+2*padding[1]+strides[1]-1)/strides[1]+1 ``` PaddlePaddle:`ceil_mode`为`Ture`时,输出大小计算方式与Caffe一致;当`ceil_mode`为`False`时,输出大小计算方式如下所示, ``` # ceil_model为False时,计算公式 H_out = (H_in-ksize[0]+2*padding[0])/strides[0]+1 W_out = (W_in-ksize[1]+2*padding[1])/strides[1]+1 ``` #### 池化方式 Caffe:通过`pool`参数设置,支持`MAX`, `AVE`和`STOCHASTIC`三种池化方式; PaddlePaddle:通过`pool_type`参数设置,支持`max`和`avg`两种池化方式。 #### 其他 Caffe:无`exclusive`参数; PaddlePaddle:`exclusive`参数为`True`的情况下,`avg`平均池化过程中会忽略填充值。 ### 代码示例 ``` # Caffe示例: # 输入shape:(1,3,228,228) # 输出shape:(1,3,114,114) layer{ name: "pool" type: "Pooling" bottom: "data" top: "pool" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } ``` ``` python # PaddlePaddle示例: # 输入shape:(1,3,228,228) # 输出shape:(1,3,113,113) pool1 = paddle.fluid.layers.pool2d(input = inputs , pool_size = 3, pool_type = 'max', pool_stride = 2, ceil_mode=False) ```