# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from six import text_type as _text_type from x2paddle import program import argparse import sys import logging def arg_parser(): parser = argparse.ArgumentParser() parser.add_argument( "--model", "-m", type=_text_type, default=None, help="define model file path for tensorflow or onnx") parser.add_argument( "--prototxt", "-p", type=_text_type, default=None, help="prototxt file of caffe model") parser.add_argument( "--weight", "-w", type=_text_type, default=None, help="weight file of caffe model") parser.add_argument( "--save_dir", "-s", type=_text_type, default=None, help="path to save translated model") parser.add_argument( "--framework", "-f", type=_text_type, default=None, help="define which deeplearning framework(tensorflow/caffe/onnx/paddle2onnx)" ) parser.add_argument( "--caffe_proto", "-c", type=_text_type, default=None, help="optional: the .py file compiled by caffe proto file of caffe model" ) parser.add_argument( "--version", "-v", action="store_true", default=False, help="get version of x2paddle") parser.add_argument( "--define_input_shape", "-d", action="store_true", default=False, help="define input shape for tf model") parser.add_argument( "--convert_torch_project", "-tp", action='store_true', help="Convert the PyTorch Project.") parser.add_argument( "--project_dir", "-pd", type=_text_type, default=None, help="define project folder path for pytorch") parser.add_argument( "--pretrain_model", "-pm", type=_text_type, default=None, help="pretrain model file of pytorch model") parser.add_argument( "--enable_code_optim", "-co", default=True, help="Turn on code optimization") parser.add_argument( "--to_lite", "-tl", default=False, help="convert to Paddle-Lite format") parser.add_argument( "--lite_valid_places", "-vp", type=_text_type, default="arm", help="Specify the executable backend of the model") parser.add_argument( "--lite_model_type", "-mt", type=_text_type, default="naive_buffer", help="The type of lite model") return parser def convert2lite(save_dir, lite_valid_places="arm", lite_model_type="naive_buffer"): """Convert to Paddle-Lite format.""" from paddlelite.lite import Opt opt = Opt() opt.set_model_dir(save_dir + "/inference_model") opt.set_valid_places(lite_valid_places) opt.set_model_type(lite_model_type) opt.set_optimize_out(save_dir + "/opt") opt.run() def tf2paddle(model_path, save_dir, define_input_shape=False, convert_to_lite=False, lite_valid_places="arm", lite_model_type="naive_buffer"): # check tensorflow installation and version try: import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3' import tensorflow as tf version = tf.__version__ if version >= '2.0.0' or version < '1.0.0': logging.info( "[ERROR] 1.0.0<=TensorFlow<2.0.0 is required, and v1.14.0 is recommended" ) return except: logging.info( "[ERROR] TensorFlow is not installed, use \"pip install TensorFlow\"." ) return from x2paddle.decoder.tf_decoder import TFDecoder from x2paddle.op_mapper.tf2paddle.tf_op_mapper import TFOpMapper logging.info("Now translating model from TensorFlow to Paddle.") model = TFDecoder(model_path, define_input_shape=define_input_shape) mapper = TFOpMapper(model) mapper.paddle_graph.build() logging.info("Model optimizing ...") from x2paddle.optimizer.optimizer import GraphOptimizer graph_opt = GraphOptimizer(source_frame="tf") graph_opt.optimize(mapper.paddle_graph) logging.info("Model optimized!") mapper.paddle_graph.gen_model(save_dir) logging.info("Successfully exported Paddle static graph model!") if convert_to_lite: logging.info("Now translating model from Paddle to Paddle lite ...") convert2lite(save_dir, lite_valid_places, lite_model_type) logging.info("Successfully exported Paddle Lite support model!") def caffe2paddle(proto_file, weight_file, save_dir, caffe_proto, convert_to_lite=False, lite_valid_places="arm", lite_model_type="naive_buffer"): from x2paddle.decoder.caffe_decoder import CaffeDecoder from x2paddle.op_mapper.caffe2paddle.caffe_op_mapper import CaffeOpMapper import google.protobuf as gpb ver_part = gpb.__version__.split('.') version_satisfy = False if (int(ver_part[0]) == 3 and int(ver_part[1]) >= 6) \ or (int(ver_part[0]) > 3): version_satisfy = True assert version_satisfy, '[ERROR] google.protobuf >= 3.6.0 is required' logging.info("Now translating model from caffe to paddle.") model = CaffeDecoder(proto_file, weight_file, caffe_proto) mapper = CaffeOpMapper(model) mapper.paddle_graph.build() logging.info("Model optimizing ...") from x2paddle.optimizer.optimizer import GraphOptimizer graph_opt = GraphOptimizer(source_frame="caffe") graph_opt.optimize(mapper.paddle_graph) logging.info("Model optimized!") mapper.paddle_graph.gen_model(save_dir) logging.info("Successfully exported Paddle static graph model!") if convert_to_lite: logging.info("Now translating model from Paddle to Paddle lite ...") convert2lite(save_dir, lite_valid_places, lite_model_type) logging.info("Successfully exported Paddle Lite support model!") def onnx2paddle(model_path, save_dir, convert_to_lite=False, lite_valid_places="arm", lite_model_type="naive_buffer"): # check onnx installation and version try: import onnx version = onnx.version.version v0, v1, v2 = version.split('.') version_sum = int(v0) * 100 + int(v1) * 10 + int(v2) if version_sum < 160: logging.info("[ERROR] onnx>=1.6.0 is required") return except: logging.info( "[ERROR] onnx is not installed, use \"pip install onnx==1.6.0\".") return logging.info("Now translating model from onnx to paddle.") from x2paddle.decoder.onnx_decoder import ONNXDecoder from x2paddle.op_mapper.onnx2paddle.onnx_op_mapper import ONNXOpMapper model = ONNXDecoder(model_path) mapper = ONNXOpMapper(model) mapper.paddle_graph.build() mapper.paddle_graph.gen_model(save_dir) logging.info("Successfully exported Paddle static graph model!") if convert_to_lite: logging.info("Now translating model from Paddle to Paddle lite ...") convert2lite(save_dir, lite_valid_places, lite_model_type) logging.info("Successfully exported Paddle Lite support model!") def pytorch2paddle(module, save_dir, jit_type="trace", input_examples=None, enable_code_optim=True, convert_to_lite=False, lite_valid_places="arm", lite_model_type="naive_buffer"): # check pytorch installation and version try: import torch version = torch.__version__ v0, v1, v2 = version.split('.') # Avoid the situation where the version is equal to 1.7.0+cu101 if '+' in v2: v2 = v2.split('+')[0] version_sum = int(v0) * 100 + int(v1) * 10 + int(v2) if version_sum < 150: logging.info( "[ERROR] PyTorch>=1.5.0 is required, 1.6.0 is the most recommended" ) return if version_sum > 160: logging.info("[WARNING] PyTorch==1.6.0 is recommended") except: logging.info( "[ERROR] PyTorch is not installed, use \"pip install torch==1.6.0 torchvision\"." ) return logging.info("Now translating model from PyTorch to Paddle.") from x2paddle.decoder.pytorch_decoder import ScriptDecoder, TraceDecoder from x2paddle.op_mapper.pytorch2paddle.pytorch_op_mapper import PyTorchOpMapper if jit_type == "trace": model = TraceDecoder(module, input_examples) else: model = ScriptDecoder(module, input_examples) mapper = PyTorchOpMapper(model) mapper.paddle_graph.build() logging.info("Model optimizing ...") from x2paddle.optimizer.optimizer import GraphOptimizer graph_opt = GraphOptimizer(source_frame="pytorch", jit_type=jit_type) graph_opt.optimize(mapper.paddle_graph) logging.info("Model optimized!") mapper.paddle_graph.gen_model( save_dir, jit_type=jit_type, enable_code_optim=enable_code_optim) logging.info("Successfully exported Paddle static graph model!") if convert_to_lite: logging.info("Now translating model from Paddle to Paddle lite ...") convert2lite(save_dir, lite_valid_places, lite_model_type) logging.info("Successfully exported Paddle Lite support model!") def main(): logging.basicConfig(level=logging.INFO) if len(sys.argv) < 2: logging.info("Use \"x2paddle -h\" to print the help information") logging.info( "For more information, please follow our github repo below:)") logging.info("\nGithub: https://github.com/PaddlePaddle/X2Paddle.git\n") return parser = arg_parser() args = parser.parse_args() if args.version: import x2paddle logging.info("x2paddle-{} with python>=3.5, paddlepaddle>=1.6.0\n". format(x2paddle.__version__)) return if not args.convert_torch_project: assert args.framework is not None, "--framework is not defined(support tensorflow/caffe/onnx)" assert args.save_dir is not None, "--save_dir is not defined" try: import platform v0, v1, v2 = platform.python_version().split('.') if not (int(v0) >= 3 and int(v1) >= 5): logging.info("[ERROR] python>=3.5 is required") return import paddle v0, v1, v2 = paddle.__version__.split('.') logging.info("paddle.__version__ = {}".format(paddle.__version__)) if v0 == '0' and v1 == '0' and v2 == '0': logging.info( "[WARNING] You are use develop version of paddlepaddle") elif int(v0) != 2 or int(v1) < 0: logging.info("[ERROR] paddlepaddle>=2.0.0 is required") return except: logging.info( "[ERROR] paddlepaddle not installed, use \"pip install paddlepaddle\"" ) if args.convert_torch_project: assert args.project_dir is not None, "--project_dir should be defined while translating pytorch project" from x2paddle.project_convertor.pytorch.convert import main as convert_torch convert_torch(args) else: if args.framework == "tensorflow": assert args.model is not None, "--model should be defined while translating tensorflow model" define_input_shape = False if args.define_input_shape: define_input_shape = True tf2paddle( args.model, args.save_dir, define_input_shape, convert_to_lite=args.to_lite, lite_valid_places=args.lite_valid_places, lite_model_type=args.lite_model_type) elif args.framework == "caffe": assert args.prototxt is not None and args.weight is not None, "--prototxt and --weight should be defined while translating caffe model" caffe2paddle( args.prototxt, args.weight, args.save_dir, args.caffe_proto, convert_to_lite=args.to_lite, lite_valid_places=args.lite_valid_places, lite_model_type=args.lite_model_type) elif args.framework == "onnx": assert args.model is not None, "--model should be defined while translating onnx model" onnx2paddle( args.model, args.save_dir, convert_to_lite=args.to_lite, lite_valid_places=args.lite_valid_places, lite_model_type=args.lite_model_type) elif args.framework == "paddle2onnx": logging.info( "Paddle to ONNX tool has been migrated to the new github: https://github.com/PaddlePaddle/paddle2onnx" ) else: raise Exception( "--framework only support tensorflow/caffe/onnx now") if __name__ == "__main__": main()