# X2Paddle模型测试库 > 目前X2Paddle支持50+的TensorFlow OP,40+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下模型列表中测试了X2Paddle的转换。 **注:** 受限于不同框架的差异,部分模型可能会存在目前无法转换的情况,如TensorFlow中包含控制流的模型,NLP模型等。对于CV常见的模型,如若您发现无法转换或转换失败,存在较大diff等问题,欢迎通过[ISSUE反馈](https://github.com/PaddlePaddle/X2Paddle/issues/new)的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:) ## TensorFlow | 模型 | 代码 | 备注 | |------|----------|------| | SqueezeNet | [code](https://github.com/tensorflow/tpu/blob/master/models/official/squeezenet/squeezenet_model.py)|-| | MobileNet_V1 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |-| | MobileNet_V2 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |-| | ShuffleNet | [code](https://github.com/TropComplique/shufflenet-v2-tensorflow) |-| | mNASNet | [code](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet) |-| | EfficientNet | [code](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |-| | Inception_V3 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py) |-| | Inception_V4 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py) |-| | Inception_ResNet_V2 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py) |-| | VGG16 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |-| | ResNet_V1_101 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |-| | ResNet_V2_101 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |-| | UNet | [code1](https://github.com/jakeret/tf_unet )/[code2](https://github.com/lyatdawn/Unet-Tensorflow) |-| | MTCNN | [code](https://github.com/AITTSMD/MTCNN-Tensorflow) |-| | YOLO-V3| [code](https://github.com/YunYang1994/tensorflow-yolov3) | 转换需要关闭NHWC->NCHW的优化,见[文档Q2](FAQ.md) | | FALSR | [code](https://github.com/xiaomi-automl/FALSR) | 需使用参数without_data_format_optimization | | DCSCN | [code](https://modelzoo.co/model/dcscn-super-resolution) | 需使用参数without_data_format_optimization | | Bert(albert) | [code](https://github.com/google-research/albert#pre-trained-models) | 需使用参数without_data_format_optimization | | Bert(chinese_L-12_H-768_A-12) | [code](https://github.com/google-research/bert#pre-trained-models) | 需使用参数without_data_format_optimization | | Bert(multi_cased_L-12_H-768_A-12) | [code](https://github.com/google-research/bert#pre-trained-models) | 需使用参数without_data_format_optimization | ## Caffe | 模型 | 代码 | |-------|--------| | SqueezeNet | [code](https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1) | | MobileNet_V1 | [code](https://github.com/shicai/MobileNet-Caffe) | | MobileNet_V2 | [code](https://github.com/shicai/MobileNet-Caffe) | | ShuffleNet_v2 | [code](https://github.com/miaow1988/ShuffleNet_V2_pytorch_caffe/releases/tag/v0.1.0) | | InceptionV3 | [code](https://github.com/soeaver/caffe-model/blob/master/cls/inception/) | | InceptionV4 | [code](https://github.com/soeaver/caffe-model/blob/master/cls/inception/) | | mNASNet | [code](https://github.com/LiJianfei06/MnasNet-caffe) | | MTCNN | [code](https://github.com/kpzhang93/MTCNN_face_detection_alignment/tree/master/code/codes/MTCNNv1/model) | | Mobilenet_SSD | [code](https://github.com/chuanqi305/MobileNet-SSD) | | ResNet18 | [code](https://github.com/HolmesShuan/ResNet-18-Caffemodel-on-ImageNet/blob/master/deploy.prototxt) | | ResNet50 | [code](https://github.com/soeaver/caffe-model/blob/master/cls/resnet/deploy_resnet50.prototxt) | | Unet | [code](https://github.com/jolibrain/deepdetect/blob/master/templates/caffe/unet/deploy.prototxt) | | VGGNet | [code](https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-vgg_ilsvrc_16_layers_deploy-prototxt) | | FaceDetection | [code](https://github.com/ShiqiYu/libfacedetection/blob/master/models/caffe/yufacedetectnet-open-v1.prototxt) | ## ONNX **注:** 部分模型来源于PyTorch,PyTorch的转换可参考[pytorch_to_onnx.md](pytorch_to_onnx.md) | 模型 | 来源 | operator version|备注| |-------|--------|---------|---------| | ResNet18 | [torchvison.model.resnet18](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9| | ResNet34 | [torchvison.model.resnet34](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9| | ResNet50 | [torchvison.model.resnet50](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9| | ResNet101 | [torchvison.model.resnet101](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9| | VGG11 | [torchvison.model.vgg11](https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py) |9| | VGG11_bn | [torchvison.model.vgg11_bn](https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py) |9| | VGG19| [torchvison.model.vgg19](https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py) |9| | DenseNet121 | [torchvison.model.densenet121](https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py) |9| | AlexNet | [torchvison.model.alexnet](https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py) |9| | ShuffleNet | [onnx official](https://github.com/onnx/models/tree/master/vision/classification/shufflenet) |9| | Inception_V2 | [onnx official](https://github.com/onnx/models/tree/master/vision/classification/inception_and_googlenet/inception_v2) |9| | MobileNet_V2 | [pytorch(personal practice)](https://github.com/tonylins/pytorch-mobilenet-v2) |9| | mNASNet | [pytorch(personal practice)](https://github.com/rwightman/gen-efficientnet-pytorch) |9| | EfficientNet | [pytorch(personal practice)](https://github.com/rwightman/gen-efficientnet-pytorch) |9| | SqueezeNet | [onnx official](https://s3.amazonaws.com/download.onnx/models/opset_9/squeezenet.tar.gz) |9| |Ultra-Light-Fast-Generic-Face-Detector-1MB| [onnx_model](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/tree/master/models/onnx)|9 | |BERT| [pytorch(huggingface)](https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb)|11|转换时需指定input shape,见[文档Q3](FAQ.md)| |GPT2| [pytorch(huggingface)](https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb)|11|转换时需指定input shape,见[文档Q3](FAQ.md)|