提交 fef5149c 编写于 作者: J jiangjiajun

add NCHW change

上级 0a1078ca
......@@ -116,7 +116,7 @@ class OpMapper(object):
feeded_var_names=input_names,
target_vars=outputs,
executor=exe,
params_filename="__params__")
params_filename=None)
except:
raise Exception(
"Paddle code was saved in {}/model.py, but seems there's wrong exist, please check model.py manually."
......
......@@ -24,7 +24,7 @@ import sys
class TFGraphNode(GraphNode):
def __init__(self, layer, layer_name=None):
def __init__(self, layer, layer_name=None, data_format="NHWC"):
if layer_name is None:
super(TFGraphNode,
self).__init__(layer,
......@@ -35,6 +35,8 @@ class TFGraphNode(GraphNode):
layer_name.replace('/', '_').replace('-', '_'))
self.layer_type = layer.op
self.tf_data_format = data_format
self.pd_data_format = "NCHW"
self.fluid_code = FluidCode()
self.dtype_map = {1: "float32", 3: "int32", 4: "int8", 9: "int64"}
......@@ -86,15 +88,16 @@ class TFGraphNode(GraphNode):
class TFGraph(Graph):
def __init__(self, model):
def __init__(self, model, data_format="NHWC"):
super(TFGraph, self).__init__(model)
self.identity_map = dict()
self.multi_out_ops = ['Split', 'SplitV']
self.tf_data_format = data_format
def build(self):
for layer in self.model.node:
self.node_map[layer.name.replace('/', '_').replace(
'-', '_')] = TFGraphNode(layer)
'-', '_')] = TFGraphNode(layer, data_format=self.tf_data_format)
for layer_name, node in self.node_map.items():
for in_node in node.layer.input:
......@@ -166,9 +169,20 @@ class TFGraph(Graph):
idx = self.output_nodes.index(node_name)
self.output_nodes[idx] = input_node.layer_name
def data_format_propagation(self, node):
current_node = self.node_map[node.layer_name]
current_node = node.tf_data_format
outputs = current_node.outputs
if len(outputs) == 0:
return
for out in outputs:
next_node = self.node_map[out]
next_node.tf_data_format = node.tf_data_format
self.data_format_propagation(next_node)
class TFDecoder(object):
def __init__(self, pb_model):
def __init__(self, pb_model, data_format="NHWC"):
self.sess = tf.Session()
self.input_info = dict()
with gfile.FastGFile(pb_model, 'rb') as f:
......@@ -186,7 +200,7 @@ class TFDecoder(object):
self.sess.run(tf.global_variables_initializer())
self.tf_graph = TFGraph(
self.sess.graph._as_graph_def(add_shapes=True)[0])
self.sess.graph._as_graph_def(add_shapes=True)[0], data_format)
self.tf_graph.build()
def _fix_output_shape(self, graph):
......
......@@ -28,6 +28,25 @@ def get_same_padding(in_size, kernel_size, stride):
return [pad0, pad1]
def nhwc_dim_to_nchw(node, dim):
tf_data_format = list(node.tf_data_format)
pd_data_format = list(node.pd_data_format)
if isinstance(dim, list):
for i in range(len(dim)):
char = tf_data_format[dim[i]]
dim[i] = pd_data_format.index(char)
else:
char = tf_data_format[dim]
dim = pd_data_format.index(char)
return dim
if dim < 0:
dim += 4
if dim > 0:
dim = (dim + 1) % 4 + int((dim + 1) / 4)
return dim
class TFOpMapper(OpMapper):
directly_map_ops = {
'Relu': ['relu'],
......@@ -36,18 +55,11 @@ class TFOpMapper(OpMapper):
'Abs': ['abs'],
'Sigmoid': ['sigmoid'],
'Exp': ['exp'],
'Rsqrt': ['rsqrt'],
'Squeeze': ['squeeze', {
'squeeze_dims': 'axes'
}],
'Softmax': ['softmax', {
'axis': 'axis'
}],
'Rsqrt': ['rsqrt']
}
elementwise_ops = {
'Add': 'elementwise_add',
'RealDiv': 'elementwise_div',
'BiasAdd': 'elementwise_add',
'Sub': 'elementwise_sub',
'Maximum': 'elementwise_max',
'Mul': 'elementwise_mul'
......@@ -121,6 +133,19 @@ class TFOpMapper(OpMapper):
else:
raise Exception("Unexpected situation happend")
if len(x_shape) == 4 and len(y_shape) == 1:
if x_input.tf_data_format == "NHWC":
axis = 1
else:
axis = -1
attr = {"axis": axis}
inputs = {"x": x_input, "y": y_input}
node.fluid_code.add_layer(op_type,
inputs=inputs,
output=node,
param_attr=attr)
return
is_sub_seq = True
for i in range(len(y_shape)):
index = -1 * i - 1
......@@ -143,6 +168,10 @@ class TFOpMapper(OpMapper):
else:
raise Exception("Unexpected situation happend")
if x_need_expand:
if len(x_expand_times) == 3 and x.tf_data_format == "NHWC":
x_expand_times = [x_expand_times[i] for i in [2, 0, 1]]
if len(x_expand_times) == 4 and x.tf_data_format == "NHWC":
x_expand_times = [x_expand_times[i] for i in [0, 3, 1, 2]]
attr = {"expand_times": x_expand_times}
node.fluid_code.add_layer("expand",
inputs=x_input,
......@@ -150,6 +179,10 @@ class TFOpMapper(OpMapper):
param_attr=attr)
x_input = "x_tmp"
if y_need_expand:
if len(y_expand_times) == 3 and y.tf_data_format == "NHWC":
y_expand_times = [y_expand_times[i] for i in [2, 0, 1]]
if len(y_expand_times) == 4 and y.tf_data_format == "NHWC":
y_expand_times = [y_expand_times[i] for i in [0, 3, 1, 2]]
attr = {"expand_times": y_expand_times}
node.fluid_code.add_layer("expand",
inputs=y_input,
......@@ -166,6 +199,10 @@ class TFOpMapper(OpMapper):
shape = node.out_shapes[0]
assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
node.layer_name)
if node.tf_data_format == "NHWC" and len(shape) == 4:
shape = [shape[i] for i in [0, 3, 1, 2]]
elif node.tf_data_format == "NCHW" and len(shape) == 4:
self.graph.data_format_propagation(node)
dtype = node.dtype
attr = {
'dtype': string(dtype),
......@@ -188,6 +225,19 @@ class TFOpMapper(OpMapper):
shape = [1]
initializer = "Constant({})".format(value)
self.weights[node.layer_name] = node.value
if node.tf_data_format == "NHWC":
if len(shape) == 4:
shape = [shape[i] for i in [0, 3, 1, 2]]
if len(shape) == 3:
shape = [shape[i] for i in [2, 0, 1]]
self.weights[node.layer_name] = numpy.transpose(
node.value, (2, 0, 1))
elif node.tf_data_format == "NCHW":
if len(shape) == 4:
self.graph.data_format_propagation(node)
attr = {
'dtype': string(dtype),
'shape': shape,
......@@ -198,7 +248,6 @@ class TFOpMapper(OpMapper):
inputs=None,
output=node,
param_attr=attr)
self.weights[node.layer_name.replace('/', '_')] = node.value
def Transpose(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
......@@ -208,11 +257,46 @@ class TFOpMapper(OpMapper):
perm.fluid_code.clear()
perm = perm.value.tolist()
if perm == [0, 3, 1, 2] and input.data_format == "NHWC":
node.fluid_code.add_layer("assign",
inputs=input,
output=node,
param_attr=None)
node.tf_data_format = "NCHW"
self.graph.data_format_propagation(node)
elif perm == [0, 2, 3, 1] and input.tf_data_format == "NCHW":
node.fluid_code.add_layer("assign",
inputs=input,
output=node,
param_attr=None)
node.tf_data_format = "NHWC"
self.graph.data_format_propagation(node)
elif len(input.out_shapes[0]) > 4:
print(input.layer_name, input.tf_data_format, input.pd_data_format)
tf_data_format = list(input.tf_data_format)
pd_data_format = list(input.pd_data_format)
new_perm = [i for i in range(len(perm))]
for i in range(len(perm)):
char0 = tf_data_format[i]
char1 = tf_data_format[perm[i]]
index0 = pd_data_format.index(char0)
index1 = pd_data_format.index(char1)
new_perm[index0] = index1
node.tf_data_format = [tf_data_format[i] for i in perm]
node.pd_data_format = [pd_data_format[i] for i in perm]
attr = {'perm': new_perm}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
elif len(node.out_shapes[0]) != 4:
attr = {'perm': perm}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
else:
raise Exception("Unexpected situation happend in Transpose OP")
def MaxPool(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
......@@ -226,16 +310,14 @@ class TFOpMapper(OpMapper):
data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW"
padding = 0
if not channel_first:
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
strides = [strides[i] for i in [0, 3, 1, 2]]
k_size = [k_size[i] for i in [0, 3, 1, 2]]
else:
self.graph.data_format_propagation(node)
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[2], strides[2])
......@@ -243,27 +325,19 @@ class TFOpMapper(OpMapper):
pad_h = pad_h[0] + pad_h[1]
pad_w = pad_w[0] + pad_w[1]
attr = {"paddings": [0, pad_h, 0, pad_w], "pad_value": -10000.0}
if pad_h + pad_w != 0:
node.fluid_code.add_layer(
"pad2d",
inputs=input if channel_first else node,
node.fluid_code.add_layer("pad2d",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = {
"pool_size": k_size[2:4],
"pool_type": string("max"),
"pool_padding": padding,
"pool_stride": strides[2:4]
}
node.fluid_code.add_layer(
"pool2d",
inputs=input if channel_first and pad_mode != "SAME" else node,
output=node,
param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
node.fluid_code.add_layer("pool2d",
inputs=input,
output=node,
param_attr=attr)
......@@ -288,47 +362,54 @@ class TFOpMapper(OpMapper):
data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW"
padding = 0
if not channel_first:
self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
kernel.value, (3, 2, 0, 1))
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
if not channel_first:
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
strides = [strides[i] for i in [0, 3, 1, 2]]
dilations = [dilations[i] for i in [0, 3, 1, 2]]
else:
self.graph.data_format_propagation(node)
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
padding = [pad_h[0], pad_w[0]]
else:
attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
if pad_h[0] + pad_h[1] + pad_w[0] + pad_w[1] != 0:
node.fluid_code.add_layer(
"pad2d",
inputs=input if channel_first else node,
node.fluid_code.add_layer("pad2d",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = {
"bias_attr": False,
"param_attr": string(kernel.layer_name),
"num_filters": k_size[3],
"filter_size": k_size[0:2],
"stride": strides[2:4],
"dilation": dilations[2:4]
"dilation": dilations[2:4],
"padding": padding
}
node.fluid_code.add_layer(
"conv2d",
inputs=input if channel_first and pad_mode != "SAME" else node,
node.fluid_code.add_layer("conv2d",
inputs=input,
output=node,
param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
def BiasAdd(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
bias = self.graph.get_node(node.layer.input[1], copy=True)
axis = -1
if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
axis = 1
inputs = {"x": input, "y": bias}
attr = {"axis": axis}
node.fluid_code.add_layer("elementwise_add",
inputs=inputs,
output=node,
param_attr=attr)
......@@ -350,17 +431,12 @@ class TFOpMapper(OpMapper):
self.omit_nodes.append(moving_mean.layer_name)
self.omit_nodes.append(moving_var.layer_name)
if not channel_first:
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
if channel_first:
self.data_format_propagation(node)
attr = {
"epsilon": node.get_attr("epsilon"),
"param_attr": string(gamma.layer_name),
# "data_layout": string(node.get_attr("data_format").decode()),
"bias_attr": string(beta.layer_name),
"moving_mean_name": string(moving_mean.layer_name),
"moving_variance_name": string(moving_var.layer_name),
......@@ -368,14 +444,7 @@ class TFOpMapper(OpMapper):
}
node.fluid_code.add_layer("batch_norm",
inputs=input if channel_first else node,
output=node,
param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
inputs=input,
output=node,
param_attr=attr)
......@@ -400,29 +469,31 @@ class TFOpMapper(OpMapper):
data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW"
padding = 0
if not channel_first:
self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
kernel.value, (2, 3, 0, 1))
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
if not channel_first:
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
strides = [strides[i] for i in [0, 3, 1, 2]]
dilations = [dilations[i] for i in [0, 3, 1, 2]]
else:
self.data_format_propagation(node)
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
padding = [pad_h[0], pad_w[0]]
else:
attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
if pad_h[0] + pad_h[1] + pad_w[0] + pad_w[1] != 0:
node.fluid_code.add_layer("pad2d",
inputs=input if channel_first
and pad_mode != "SAME" else node,
inputs=input,
output=node,
param_attr=attr)
input = node
attr = {
"bias_attr": False,
"param_attr": string(kernel.layer_name),
......@@ -430,17 +501,11 @@ class TFOpMapper(OpMapper):
"filter_size": k_size[0:2],
"stride": strides[2:4],
"dilation": dilations[2:4],
"groups": k_size[3] * in_shape[1]
"groups": k_size[3] * in_shape[1],
"padding": padding
}
node.fluid_code.add_layer("conv2d",
inputs=input if channel_first else node,
output=node,
param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
inputs=input,
output=node,
param_attr=attr)
......@@ -474,6 +539,8 @@ class TFOpMapper(OpMapper):
new_param += (node.layer_name + "[{}]".format(i) + ", ")
new_param = new_param.strip(", ") + "]"
attr = {"shape": new_param}
if len(attr["shape"]) == 4 and node.tf_data_format == "NHWC":
attr["shape"] = [attr["shape"][i] for i in [0, 3, 1, 2]]
node.fluid_code.add_layer("reshape",
inputs=input,
output=node,
......@@ -493,14 +560,11 @@ class TFOpMapper(OpMapper):
channel_first = data_format == "NCHW"
if not channel_first:
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
strides = [strides[i] for i in [0, 3, 1, 2]]
k_size = [k_size[i] for i in [0, 3, 1, 2]]
else:
self.graph.data_format_propagation(node)
attr = {
"pool_size": k_size[2:4],
......@@ -514,14 +578,7 @@ class TFOpMapper(OpMapper):
1], "Cannot map AvgPool"
attr["pool_padding"] = [pad_h[0], pad_w[0]]
node.fluid_code.add_layer("pool2d",
inputs=input if channel_first else node,
output=node,
param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
inputs=input,
output=node,
param_attr=attr)
......@@ -533,6 +590,9 @@ class TFOpMapper(OpMapper):
assert dim.layer_type == "Const"
self.omit_nodes.append(num_sections.layer_name)
self.omit_nodes.append(dim.layer_name)
dim = dim.value
if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
dim = nhwc_dim_to_nchw(input, dim)
attr = {
"num_or_sections": num_sections.value.tolist(),
"dim": dim.value
......@@ -550,7 +610,11 @@ class TFOpMapper(OpMapper):
axis = self.graph.get_node(node.layer.input[-1], copy=True)
assert axis.layer_type == "Const"
self.omit_nodes.append(axis.layer_name)
attr = {"axis": axis.value}
axis = axis.value
if inputs[0].tf_data_format == "NHWC" and len(
inputs[0].out_shapes[0]) == 4:
axis = nhwc_dim_to_nchw(inputs[0], axis)
attr = {"axis": axis}
node.fluid_code.add_layer("concat",
inputs=inputs,
output=node,
......@@ -561,7 +625,13 @@ class TFOpMapper(OpMapper):
expand_times = self.graph.get_node(node.layer.input[1], copy=True)
assert expand_times.layer_type == "Const"
self.omit_nodes.append(expand_times.layer_name)
attr = {"expand_times": expand_times.value.tolist()}
expand_times = expand_times.value.tolist()
if input.tf_data_format == "NHWC":
if len(input.out_shapes[0]) == 4:
expand_times = [expand_times[i] for i in [0, 3, 1, 2]]
elif len(input.out_shape[0]) == 3:
expand_times = [expand_times[i] for i in [2, 0, 1]]
attr = {"expand_times": expand_times}
node.fluid_code.add_layer("expand",
inputs=input,
output=node,
......@@ -571,7 +641,18 @@ class TFOpMapper(OpMapper):
inputs = [
self.graph.get_node(name, copy=True) for name in node.layer.input
]
attr = {"axis": node.get_attr("axis")}
axis = node.get_attr("axis")
if inputs[0].tf_data_format == "NHWC" and len(
inputs[0].out_shapes[0]) == 4:
tf_data_format = list(inputs[0].tf_data_format)
tf_data_format.insert(axis, str(len(tf_data_format)))
axis = nhwc_dim_to_nchw(inputs[0], axis)
pd_data_format = list(inputs[0].pd_data_format)
pd_data_format.insert(axis, str(len(pd_data_format)))
node.tf_data_format = "".join(tf_data_format)
node.pd_data_format = "".join(pd_data_format)
attr = {"axis": axis}
node.fluid_code.add_layer("stack",
inputs=inputs,
output=node,
......@@ -582,7 +663,10 @@ class TFOpMapper(OpMapper):
paddings = self.graph.get_node(node.layer.input[1], copy=True)
assert paddings.layer_type == "Const", "Padding should be Const"
self.omit_nodes.append(paddings.layer_name)
attr = {"paddings": paddings.value.flatten().tolist()}
paddings = paddings.value.flatten().tolist()
if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
paddings = [paddings[i] for i in [0, 1, 6, 7, 2, 3, 4, 5]]
attr = {"paddings": paddings}
node.fluid_code.add_layer("pad",
inputs=input,
output=node,
......@@ -624,8 +708,14 @@ class TFOpMapper(OpMapper):
input = self.graph.get_node(node.layer.input[0], copy=True)
reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
dims = reduce_idx.value.tolist()
keep_dims = node.get_attr("keep_dims")
attr = {"dim": reduce_idx.value.tolist(), "keep_dim": keep_dims}
if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
for i in range(len(dims)):
dims[i] = nhwc_dim_to_nchw(input, dims[i])
attr = {"dim": dims, "keep_dim": keep_dims}
node.fluid_code.add_layer("reduce_mean",
inputs=input,
output=node,
......@@ -658,7 +748,10 @@ class TFOpMapper(OpMapper):
axis = self.graph.get_node(node.layer.input[1], copy=True)
assert axis.layer_type == "Const", "ArgMax only support Const parameter"
self.omit_nodes.append(axis.layer_name)
attr = {"axis": axis.value}
axis = axis.value
if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
axis = nhwc_dim_to_nchw(input, axis)
attr = {"axis": axis}
node.fluid_code.add_layer("argmax",
inputs=input,
output=node,
......@@ -678,11 +771,13 @@ class TFOpMapper(OpMapper):
strides = strides.value.tolist()
assert len(set(strides)) == 1 and strides[0] == 1
attr = {
"axes": range(len(strides)),
"starts": begin.value.tolist(),
"ends": end.value.tolist()
}
begin = begin.value.tolist()
end = end.value.tolist()
if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
begin = [begin[i] for i in [0, 3, 1, 2]]
end = [end[i] for i in [0, 3, 1, 2]]
attr = {"axes": range(len(strides)), "starts": begin, "ends": end}
node.fluid_code.add_layer("slice",
inputs=input,
output=node,
......@@ -705,6 +800,10 @@ class TFOpMapper(OpMapper):
else:
size = self.decoder.infer_tensor(size).tolist()
if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
size = [size[i] for i in [0, 3, 1, 2]]
begin = [begin[i] for i in [0, 3, 1, 2]]
attr = {"shape": size, "offsets": begin}
node.fluid_code.add_layer("crop",
inputs=input,
......@@ -732,36 +831,37 @@ class TFOpMapper(OpMapper):
data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW"
if not channel_first:
self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
kernel.value, (3, 2, 0, 1))
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer("transpose",
inputs=input,
output=node,
param_attr=attr)
if not channel_first:
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
strides = [strides[i] for i in [0, 3, 1, 2]]
dilations = [dilations[i] for i in [0, 3, 1, 2]]
else:
self.data_format_propagation(node)
padding = 0
if pad_mode == "SAME":
pad_h = get_same_padding(in_shape[2], k_size[0], strides[2])
pad_w = get_same_padding(in_shape[3], k_size[1], strides[3])
if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]:
padding = [pad_h[0], pad_w[0]]
else:
attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}
if pad_h[0] + pad_h[1] + pad_w[0] + pad_w[1] != 0:
node.fluid_code.add_layer(
"pad2d",
inputs=input if channel_first else node,
node.fluid_code.add_layer("pad2d",
inputs=input,
output=node,
param_attr=attr)
input = node
attr = {
"bias_attr": False,
"param_attr": string(kernel.layer_name),
"num_filters": k_size[3],
"filter_size": k_size[0:2],
"stride": strides[2:4],
"dilation": dilations[2:4]
"dilation": dilations[2:4],
"padding": padding
}
node.fluid_code.add_layer(
"conv2d_transpose",
......@@ -769,19 +869,16 @@ class TFOpMapper(OpMapper):
output=node,
param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs=node,
output=node,
param_attr=attr)
def Max(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
keep_dims = node.get_attr("keep_dims")
attr = {"dim": reduce_idx.value.tolist(), "keep_dim": keep_dims}
dim = reduce_idx.value.tolist()
if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
dim = nhwc_dim_to_nchw(input, dim)
attr = {"dim": dim, "keep_dim": keep_dims}
node.fluid_code.add_layer("reduce_max",
inputs=input,
output=node,
......@@ -792,7 +889,11 @@ class TFOpMapper(OpMapper):
reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
keep_dims = node.get_attr("keep_dims")
attr = {"dim": reduce_idx.value.tolist(), "keep_dim": keep_dims}
dim = reduce_idx.value.tolist()
if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
dim = nhwc_dim_to_nchw(input, dim)
attr = {"dim": dim, "keep_dim": keep_dims}
node.fluid_code.add_layer("reduce_sum",
inputs=input,
output=node,
......@@ -826,8 +927,35 @@ class TFOpMapper(OpMapper):
assert dim.layer_type == "Const"
self.omit_nodes.append(dim.layer_name)
num_split = node.get_attr('num_split')
attr = {"num_or_sections": num_split, "dim": dim.value}
dim = dim.value
if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
dim = nhwc_dim_to_nchw(input, dim)
attr = {"num_or_sections": num_split, "dim": dim}
node.fluid_code.add_layer("split",
inputs=input,
output=node,
param_attr=attr)
def Squeeze(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
squeeze_dims = node.get_attr('squeeze_dims')
if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
for i in range(len(squeeze_dims)):
squeeze_dims[i] = nhwc_dim_to_nchw(input, squeeze_dims[i])
attr = {"axes": squeeze_dims}
node.fluid_code.add_layer("squeeze",
inputs=input,
output=node,
param_attr=attr)
def Softmax(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
axis = node.get_attr("axis")
if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
axis = nhwc_dim_to_nchw(input, axis)
attr = {"axis": axis}
node.fluid_code.add_layer("softmax",
inputs=input,
output=node,
param_attr=attr)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册