Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
f3378f3b
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f3378f3b
编写于
7月 18, 2019
作者:
J
jiangjiajun
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/X2Paddle
into develop
上级
9450efde
eb421c05
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
189 addition
and
0 deletion
+189
-0
x2paddle/parser/caffe_parser.py
x2paddle/parser/caffe_parser.py
+189
-0
未找到文件。
x2paddle/parser/caffe_parser.py
浏览文件 @
f3378f3b
...
...
@@ -11,3 +11,192 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
from
google.protobuf
import
text_format
import
numpy
as
np
from
x2paddle.core.graph
import
GraphNode
,
Graph
class
CaffeResolver
(
object
):
def
__init__
(
self
,
use_default
=
True
):
self
.
use_default
=
use_default
self
.
import_caffe
()
def
import_caffepb
(
self
):
p
=
os
.
path
.
realpath
(
__file__
)
p
=
os
.
path
.
dirname
(
p
)
p
=
os
.
path
.
join
(
p
,
'./proto'
)
sys
.
path
.
insert
(
0
,
p
)
import
caffe_pb2
return
caffe_pb2
def
import_caffe
(
self
):
self
.
caffe
=
None
self
.
caffepb
=
None
if
self
.
use_default
:
try
:
# Try to import PyCaffe first
import
caffe
self
.
caffe
=
caffe
except
ImportError
:
# Fall back to the protobuf implementation
self
.
caffepb
=
self
.
import_caffepb
()
else
:
self
.
caffepb
=
self
.
import_caffepb
()
if
self
.
caffe
:
# Use the protobuf code from the imported distribution.
# This way, Caffe variants with custom layers will work.
self
.
caffepb
=
self
.
caffe
.
proto
.
caffe_pb2
self
.
NetParameter
=
self
.
caffepb
.
NetParameter
def
has_pycaffe
(
self
):
return
self
.
caffe
is
not
None
class
CaffeGraphNode
(
GraphNode
):
def
__init__
(
self
,
layer
,
layer_name
=
None
):
if
layer_name
is
None
:
super
(
CaffeGraphNode
,
self
).
__init__
(
layer
,
layer
.
name
)
else
:
super
(
CaffeGraphNode
,
self
).
__init__
(
layer
,
layer_name
)
self
.
layer_type
=
layer
.
type
def
set_params
(
self
,
params
):
self
.
data
=
params
class
CaffeGraph
(
Graph
):
def
__init__
(
self
,
model
,
params
):
self
.
params
=
params
super
(
CaffeGraph
,
self
).
__init__
(
model
)
def
filter_layers
(
self
,
layers
):
'''Filter out layers based on the current phase.'''
phase_map
=
{
0
:
'train'
,
1
:
'test'
}
filtered_layer_names
=
set
()
filtered_layers
=
[]
print
(
'The filter layer:'
)
for
layer
in
layers
:
phase
=
'test'
if
len
(
layer
.
include
):
phase
=
phase_map
[
layer
.
include
[
0
].
phase
]
if
len
(
layer
.
exclude
):
phase
=
phase_map
[
1
-
layer
.
include
[
0
].
phase
]
exclude
=
(
phase
!=
'test'
)
# Dropout layers appear in a fair number of Caffe
# test-time networks. These are just ignored. We'll
# filter them out here.
if
(
not
exclude
)
and
(
phase
==
'test'
):
exclude
=
(
layer
.
type
==
'Dropout'
)
if
not
exclude
:
filtered_layers
.
append
(
layer
)
# Guard against dupes.
assert
layer
.
name
not
in
filtered_layer_names
filtered_layer_names
.
add
(
layer
.
name
)
else
:
print
(
layer
.
name
)
return
filtered_layers
def
build
(
self
):
layers
=
self
.
model
.
layers
or
self
.
model
.
layer
layers
=
self
.
filter_layers
(
layers
)
inputs_num
=
len
(
self
.
model
.
input
)
if
inputs_num
!=
0
:
input_dims_num
=
len
(
self
.
model
.
input_dim
)
if
input_dims_num
>
0
and
input_dims_num
!=
inputs_num
*
4
:
raise
Error
(
'invalid input_dim[%d] param in prototxt'
%
(
input_dims_num
))
for
i
in
range
(
inputs_num
):
dims
=
self
.
model
.
input_dim
[
i
*
4
:(
i
+
1
)
*
4
]
data
=
self
.
model
.
layer
.
add
()
try
:
from
caffe
import
layers
as
L
data
.
CopyFrom
(
L
.
Input
(
input_param
=
dict
(
shape
=
dict
(
dim
=
[
dims
[
0
],
dims
[
1
],
dims
[
2
],
dims
[
3
]
]))).
to_proto
().
layer
[
0
])
except
:
raise
Error
(
'You must install the caffe first when you use old style prototxt.'
)
data
.
name
=
self
.
model
.
input
[
0
]
data
.
top
[
0
]
=
self
.
model
.
input
[
0
]
top_layer
=
{}
for
layer
in
layers
:
self
.
node_map
[
layer
.
name
]
=
CaffeGraphNode
(
layer
)
for
in_name
in
layer
.
bottom
:
if
in_name
in
top_layer
:
self
.
connect
(
top_layer
[
in_name
][
-
1
],
layer
.
name
)
else
:
raise
Exception
(
'input[{}] of node[{}] does not exist in node_map'
.
format
(
in_name
,
layer
.
name
))
for
out_name
in
layer
.
top
:
if
out_name
not
in
top_layer
:
top_layer
[
out_name
]
=
[
layer
.
name
]
else
:
top_layer
[
out_name
].
append
(
layer
.
name
)
for
layer_name
,
data
in
self
.
params
:
if
layer_name
in
self
.
node_map
:
node
=
self
.
node_map
[
layer_name
]
node
.
set_params
(
data
)
else
:
notice
(
'Ignoring parameters for non-existent layer: %s'
%
\
layer_name
)
super
(
CaffeGraph
,
self
).
build
()
class
CaffeParser
(
object
):
def
__init__
(
self
,
proto_path
,
model_path
,
use_caffe
=
True
):
self
.
proto_path
=
proto_path
self
.
model_path
=
model_path
self
.
resolver
=
CaffeResolver
(
use_default
=
use_caffe
)
self
.
net
=
self
.
resolver
.
NetParameter
()
with
open
(
proto_path
,
'rb'
)
as
proto_file
:
proto_str
=
proto_file
.
read
()
text_format
.
Merge
(
proto_str
,
self
.
net
)
self
.
load
()
self
.
caffe_graph
=
CaffeGraph
(
self
.
net
,
self
.
params
)
self
.
caffe_graph
.
build
()
def
load
(
self
):
if
self
.
resolver
.
has_pycaffe
():
self
.
load_using_caffe
()
else
:
self
.
load_using_pb
()
def
load_using_caffe
(
self
):
caffe
=
self
.
resolver
.
caffe
caffe
.
set_mode_cpu
()
net
=
caffe
.
Net
(
self
.
proto_path
,
self
.
model_path
,
caffe
.
TEST
)
data
=
lambda
blob
:
blob
.
data
self
.
params
=
[(
k
,
list
(
map
(
data
,
v
)))
for
k
,
v
in
net
.
params
.
items
()]
def
load_using_pb
(
self
):
data
=
self
.
resolver
.
NetParameter
()
data
.
MergeFromString
(
open
(
self
.
model_path
,
'rb'
).
read
())
pair
=
lambda
layer
:
(
layer
.
name
,
self
.
normalize_pb_data
(
layer
))
layers
=
data
.
layers
or
data
.
layer
self
.
params
=
[
pair
(
layer
)
for
layer
in
layers
if
layer
.
blobs
]
def
normalize_pb_data
(
self
,
layer
):
transformed
=
[]
for
blob
in
layer
.
blobs
:
if
len
(
blob
.
shape
.
dim
):
dims
=
blob
.
shape
.
dim
c_o
,
c_i
,
h
,
w
=
map
(
int
,
[
1
]
*
(
4
-
len
(
dims
))
+
list
(
dims
))
else
:
c_o
=
blob
.
num
c_i
=
blob
.
channels
h
=
blob
.
height
w
=
blob
.
width
data
=
np
.
array
(
blob
.
data
,
dtype
=
np
.
float32
).
reshape
(
c_o
,
c_i
,
h
,
w
)
transformed
.
append
(
data
)
return
transformed
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录