diff --git a/x2paddle/op_mapper/onnx_custom_layer/InstanceNormalization.py b/x2paddle/op_mapper/onnx_custom_layer/InstanceNormalization.py new file mode 100644 index 0000000000000000000000000000000000000000..ccdb4d897ed589913aab17ab91aa8a21fed988a6 --- /dev/null +++ b/x2paddle/op_mapper/onnx_custom_layer/InstanceNormalization.py @@ -0,0 +1,46 @@ +from .register import register +from x2paddle.core.util import * + + +def InstanceNormalization_shape(input_shape): + return input_shape + + +def InstanceNormalization_layer(inputs, name=None): + # TODO(lvmengsi@baidu.com): Check the accuracy when using fluid.layers.layer_norm. + epsilon = 1e-5 + mean = fluid.layers.reduce_mean(inputs, dim=[2, 3], keep_dim=True) + var = fluid.layers.reduce_mean(fluid.layers.square(inputs - mean), + dim=[2, 3], + keep_dim=True) + if name is not None: + scale_name = name + "_scale" + offset_name = name + "_offset" + scale_param = fluid.ParamAttr(name=scale_name, + initializer=fluid.initializer.Constant(1.0), + trainable=True) + offset_param = fluid.ParamAttr(name=offset_name, + initializer=fluid.initializer.Constant(0.0), + trainable=True) + scale = fluid.layers.create_parameter(attr=scale_param, + shape=inputs.shape[1:2], + dtype="float32") + offset = fluid.layers.create_parameter(attr=offset_param, + shape=inputs.shape[1:2], + dtype="float32") + + tmp = fluid.layers.elementwise_mul(x=(inputs - mean), y=scale, axis=1) + tmp = tmp / fluid.layers.sqrt(var + epsilon) + tmp = fluid.layers.elementwise_add(tmp, offset, axis=1) + return tmp + + +def InstanceNormalization_weights(name, data=None): + weights_name = [name + '_scale'] + return weights_name + + +register(kind='InstanceNormalization', + shape=InstanceNormalization_shape, + layer=InstanceNormalization_layer, + weights=InstanceNormalization_weights) diff --git a/x2paddle/op_mapper/onnx_custom_layer/__init__.py b/x2paddle/op_mapper/onnx_custom_layer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b482be5a9c51a322874fa52671e27855c72e82e4 --- /dev/null +++ b/x2paddle/op_mapper/onnx_custom_layer/__init__.py @@ -0,0 +1,91 @@ +from .register import get_registered_layers + +#custom layer import begins + +from . import InstanceNormalization +#custom layer import ends + +custom_layers = get_registered_layers() + + +def set_args(f, params): + """ set args for function 'f' using the parameters in node.layer.param + Args: + f (function): a python function object + params (object): a object contains attributes needed by f's arguments + Returns: + arg_names (list): a list of argument names + kwargs (dict): a dict contains needed arguments + """ + argc = f.__code__.co_argcount + arg_list = f.__code__.co_varnames[0:argc] + kwargs = {} + for arg_name in arg_list: + if hasattr(params, arg_name) and params is not None: + kwargs[arg_name] = getattr(params, arg_name) + return arg_list, kwargs + + +def has_layer(layer_type): + """ test whether this layer exists in custom layer + """ + return layer_type in custom_layers + + +def get_params(layer, layer_type): + import re + if layer_type.lower() == "deconvolution" or layer_type.lower( + ) == "convolutiondepthwise": + param_name = '_'.join(('convolution', 'param')) + elif layer_type.lower() == "normalize": + param_name = '_'.join(('norm', 'param')) + elif len(layer_type) - len(re.sub("[A-Z]", "", layer_type)) >= 2: + s = '' + tmp_name = '' + for i, ch in enumerate(layer_type): + if i == 0: + s += ch.lower() + continue + elif ch.isupper() and layer_type[i - 1].islower(): + tmp_name += (s + '_') + s = '' + s += ch.lower() + tmp_name += s + param_name = '_'.join((tmp_name, 'param')) + else: + param_name = '_'.join((layer_type.lower(), 'param')) + return getattr(layer, param_name, None) + + +def compute_output_shape(node): + """ compute the output shape of custom layer + """ + layer_type = node.layer_type + assert layer_type in custom_layers, "layer[%s] not exist in custom layers" % ( + layer_type) + shape_func = custom_layers[layer_type]['shape'] + layer = node.layer + params = get_params(layer, layer_type) + arg_names, kwargs = set_args(shape_func, params) + input_shape = node.input_shape + return shape_func(input_shape, **kwargs) + + +def make_custom_layer(node): + """ get the code which implement the custom layer function + """ + layer_type = node.layer_type + assert layer_type in custom_layers, "layer[%s] not exist in custom layers" % ( + layer_type) + layer_func = custom_layers[layer_type]['layer'] + import inspect + return inspect.getsource(layer_func), layer_func + + +def deal_weights(node, data=None): + """ deal the weights of the custom layer + """ + layer_type = node.layer_type + weights_func = custom_layers[layer_type]['weights'] + name = node.layer_name + return weights_func(name, data) diff --git a/x2paddle/op_mapper/onnx_custom_layer/register.py b/x2paddle/op_mapper/onnx_custom_layer/register.py new file mode 100644 index 0000000000000000000000000000000000000000..9600018bb5e45cc5811884626132af9dc1550721 --- /dev/null +++ b/x2paddle/op_mapper/onnx_custom_layer/register.py @@ -0,0 +1,43 @@ +""" this module provides 'register' for registering customized layers +""" + +g_custom_layers = {} + + +def register(kind, shape, layer, weights): + """ register a custom layer or a list of custom layers + + Args: + @kind (str or list): type name of the layer + @shape (function): a function to generate the shape of layer's output + @layer (function): a function to generate the paddle code of layer + @weights (function): a function to deal with weights data + + Returns: + None + """ + assert type(shape).__name__ == 'function', 'shape should be a function' + assert type(layer).__name__ == 'function', 'layer should be a function' + + if type(kind) is str: + kind = [kind] + else: + assert type( + kind + ) is list, 'invalid param "kind" for register, not a list or str' + + for k in kind: + assert type( + k) is str, 'invalid param "kind" for register, not a list of str' + assert k not in g_custom_layers, 'this type[%s] has already been registered' % ( + k) + print('register layer[%s]' % (k)) + g_custom_layers[k] = { + 'shape': shape, + 'layer': layer, + 'weights': weights + } + + +def get_registered_layers(): + return g_custom_layers