diff --git a/x2paddle/op_mapper/tf_op_mapper_nhwc.py b/x2paddle/op_mapper/tf_op_mapper_nhwc.py index 307226d6267f07c5a4414bd56b4aaa93d1e7a524..5184a9fbe21757835503abebe6442c15c4542234 100644 --- a/x2paddle/op_mapper/tf_op_mapper_nhwc.py +++ b/x2paddle/op_mapper/tf_op_mapper_nhwc.py @@ -46,7 +46,8 @@ class TFOpMapperNHWC(OpMapper): 'Softplus': ['softplus'], 'LeakyRelu': ['leaky_relu', { 'alpha': 'alpha' - }] + }], + 'Floor': ['floor'] } elementwise_ops = { 'Add': 'elementwise_add', @@ -54,6 +55,7 @@ class TFOpMapperNHWC(OpMapper): 'RealDiv': 'elementwise_div', 'Sub': 'elementwise_sub', 'Maximum': 'elementwise_max', + 'Minimum': 'elementwise_min', 'Mul': 'elementwise_mul', 'FloorDiv': 'elementwise_floordiv' } @@ -202,6 +204,52 @@ class TFOpMapperNHWC(OpMapper): node.fluid_code.add_layer( "transpose", inputs=input, output=node, param_attr=attr) + def Fill(self, node): + dims = self.graph.get_node(node.layer.input[0], copy=True) + input_value = self.graph.get_node(node.layer.input[1], copy=True) + + assert input_value.layer_type == "Const", "Value of fill OP should be Const" + + self.add_omit_nodes(input_value.layer_name, node.layer_name) + input_value = input_value.value + input_dtype = string(input_value.dtype) + attr = {'value': input_value, 'dtype': input_dtype} + + node.fluid_code.add_layer( + "fill_constant", inputs=dims, output=node, param_attr=attr) + + def DepthToSpace(self, node): + input = self.graph.get_node(node.layer.input[0], copy=True) + + block_size = node.get_attr("block_size") + data_format = node.get_attr("data_format").decode() + + if data_format == "NHWC": + attr = {"perm": [0, 3, 1, 2]} + node.fluid_code.add_layer( + "transpose", inputs=input, output=input, param_attr=attr) + n, h, w, c = input.out_shapes[0] + + attr = {'shape': [0, block_size * block_size, -1, h, w]} + node.fluid_code.add_layer( + "reshape", inputs=input, output=input, param_attr=attr) + + attr = {'perm': [0, 2, 1, 3, 4]} + node.fluid_code.add_layer( + "transpose", inputs=input, output=input, param_attr=attr) + attr = {'shape': [0, c, h, w]} + node.fluid_code.add_layer( + "reshape", inputs=input, output=input, param_attr=attr) + + attr = {'upscale_factor': block_size} + node.fluid_code.add_layer( + "pixel_shuffle", inputs=input, output=node, param_attr=attr) + + if data_format == "NHWC": + attr = {"perm": [0, 2, 3, 1]} + node.fluid_code.add_layer( + "transpose", inputs=node, output=node, param_attr=attr) + def MaxPool(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) @@ -236,6 +284,7 @@ class TFOpMapperNHWC(OpMapper): def Conv2D(self, node): input = self.graph.get_node(node.layer.input[0], copy=True) kernel = self.graph.get_node(node.layer.input[1], copy=True) + self.add_omit_nodes(kernel.layer_name, node.layer_name) k_size = kernel.out_shapes[0] strides = node.get_attr("strides") @@ -245,10 +294,17 @@ class TFOpMapperNHWC(OpMapper): channel_first = data_format == "NCHW" if kernel.layer_type == 'Const': - self.add_omit_nodes(kernel.layer_name, node.layer_name) kernel_value = kernel.value - self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( - kernel_value, (3, 2, 0, 1)) + kernel_weight_name = kernel.layer_name.replace('/', '_') + else: + kernel_value = self.decoder.infer_tensor(kernel) + if kernel.layer_type == 'Split': + kernel_weight_name = "{}_{}_kernel".format(node.layer_name, + kernel.layer_name) + else: + kernel_weight_name = kernel.layer_name.replace('/', '_') + self.weights[kernel_weight_name] = numpy.transpose(kernel_value, + (3, 2, 0, 1)) if not channel_first: strides = [strides[i] for i in [0, 3, 1, 2]] @@ -257,10 +313,9 @@ class TFOpMapperNHWC(OpMapper): node.fluid_code.add_layer( "transpose", inputs=input, output=node, param_attr=attr) input = node - attr = { "bias_attr": False, - "param_attr": string(kernel.layer_name), + "param_attr": string(kernel_weight_name), "num_filters": k_size[3], "filter_size": k_size[0:2], "stride": strides[2:4], @@ -700,13 +755,16 @@ class TFOpMapperNHWC(OpMapper): input = self.graph.get_node(node.layer.input[2], copy=True) assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const" - assert out_shape.layer_type == "Const", "Out_shape of Conv2DBackpropInput should be Const" self.add_omit_nodes(kernel.layer_name, node.layer_name) - - out_shape = out_shape.value.tolist() self.add_omit_nodes(out_shape.layer_name, node.layer_name) + if out_shape.layer_type == "Const": + out_shape = out_shape.value.tolist() + else: + out_shape = self.decoder.infer_shape_tensor(out_shape, + node.out_shapes[0]) + in_shape = input.out_shapes[0] if in_shape.count(-1) > 2: in_shape = self.decoder.infer_tensor(input).shape