未验证 提交 e5f64f3e 编写于 作者: M mamingjie-China 提交者: GitHub

Merge pull request #4 from PaddlePaddle/develop_jason

Develop jason
---
name: caffe2paddle
about: Caffe模型转换至PaddlePaddle,请说明Caffe模型的来源,模型类型(例如图像分类、目标检测等)
---
Caffe模型转换至PaddlePaddle,请说明Caffe模型的来源,模型类型(例如图像分类、目标检测等)
如有原模型文件或github链接,如方便可一并附上,方便开发人员分析。
---
name: onnx2paddle
about: ONNX模型转换至PaddlePaddle,请说明ONNX模型的来源,模型类型(例如图像分类、目标检测等)
---
ONNX模型转换至PaddlePaddle,请说明ONNX模型的来源,模型类型(例如图像分类、目标检测等)
如有原模型文件或github链接,如方便可一并附上,方便开发人员分析。
---
name: 其它类型
about: 例如Bug类,需求建议类
---
---
name: paddle2onnx
about: Paddle模型转换至ONNX,请说明Paddle模型的来源,模型类型(例如图像分类、目标检测等)
---
Paddle模型转换至ONNX,请说明Paddle模型的来源,模型类型(例如图像分类、目标检测等)
如有原模型文件或github链接,如方便可一并附上,方便开发人员分析,同时建议说明模型转换的使用场景:)
---
name: tensorflow2paddle
about: TensorFlow模型转换至PaddlePaddle,请说明TensorFlow模型的来源,模型类型(例如图像分类、目标检测等)
---
TensorFlow模型转换至PaddlePaddle,请说明TensorFlow模型的来源,模型类型(例如图像分类、目标检测等)
如有原模型文件或github链接,可以一并附上,方便开发人员分析。
......@@ -11,3 +11,6 @@ x2paddle -f tensorflow -m tf.pb -s pd-model --without_data_format_optimization -
```
> 1. 目前Tensorflow的CV模型大部分均为`NHWC`的输入格式,而Paddle的默认输入格式为`NCHW`,因此X2Paddle在转换过程中,会对如`axis`, `shape`等参数进行转换,适应Paddle的NCHW格式。但在这种情况下,可能会由于TensorFlow模型太复杂,导致出错。 指定`--without_data_format_optimization`后,会停止对`axis`,`shape`等参数的优化(这可能会带来一定数量的transpose操作)
**Q3. ONNX模型转换过程中,提示『Unknown shape for input tensor[tensor name: "input"] -> shape: ['batch', 'sequence'], Please define shape of input here』**
A:该提示信息表示从ONNX的模型中获取到输入tensor(tensor名为"input:)的shape是语义象征性的['batch', 'sequence'],而不是dim为int类型的shape,从而可能会因为部分node的shape无法推理,导致转换失败。所以用户可以尝试手动在提示后输入详细的shape信息,如:-1,3,224,224 其中-1表示Batch
......@@ -10,12 +10,12 @@ X2Paddle在多个主流的CV模型上,测试过TensorFlow/Caffe/ONNX模型的
## 环境依赖
python == 2.7 | python >= 3.5
paddlepaddle >= 1.6.0
paddlepaddle >= 1.8.0
**按需安装以下依赖**
tensorflow : tensorflow == 1.14.0
caffe : 无
onnx : onnx == 1.6.0 onnxruntime == 1.0.0
onnx : onnx == 1.6.0
## 安装
### 安装方式一(推荐)
......@@ -61,6 +61,8 @@ x2paddle --framework=paddle2onnx --model=paddle_infer_model_dir --save_dir=onnx_
|--without_data_format_optimization | **[可选]** For TensorFlow, 当指定该参数时,关闭NHWC->NCHW的优化,见[文档Q2](FAQ.md) |
|--define_input_shape | **[可选]** For TensorFlow, 当指定该参数时,强制用户输入每个Placeholder的shape,见[文档Q2](FAQ.md) |
|--params_merge | **[可选]** 当指定该参数时,转换完成后,inference_model中的所有模型参数将合并保存为一个文件__params__ |
|--onnx_opset | **[可选]** 当framework为paddle2onnx时,该参数可设置转换为ONNX的OpSet版本,目前支持9、10、11,默认为10 |
## 使用转换后的模型
......
# X2Paddle支持OP列表
> 目前X2Paddle支持40+的TensorFlow OP,30+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。
> 目前X2Paddle支持50+的TensorFlow OP,30+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。
**注:** 目前,部分OP暂未支持,如您在转换过程中出现OP不支持的情况,可自行添加或反馈给我们。欢迎通过[ISSUE反馈](https://github.com/PaddlePaddle/X2Paddle/issues/new)的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
......@@ -20,7 +20,7 @@
| 41 | Cast | 42 | Split | 43 | Squeeze | 44 | ResizeNearestNeighbor |
| 45 | Softmax | 46 | Range | 47 | ConcatV2 | 48 | MirrorPad |
| 49 | Identity | 50 | GreaterEqual | 51 | StopGradient | 52 | Minimum |
| 53 | RadnomUniform | | | | | | |
| 53 | RadnomUniform | 54 | Fill | 55 | Floor | 56 | DepthToSpace |
## Caffe
......
__version__ = "0.7.4"
from .core.program import PaddleProgram
program = PaddleProgram()
name_counter = dict()
def gen_name(op_name, var_name):
name = "{}_{}".format(op_name, var_name)
if name not in name_counter:
name_counter[name] = 0
else:
name_counter[name] += 1
name = name + "_" + str(name_counter[name])
return name
......@@ -13,6 +13,7 @@
# limitations under the License.
from six import text_type as _text_type
from x2paddle import program
import argparse
import sys
......@@ -75,6 +76,12 @@ def arg_parser():
action="store_true",
default=False,
help="define input shape for tf model")
parser.add_argument(
"--onnx_opset",
"-oo",
type=int,
default=10,
help="when paddle2onnx set onnx opset version to export")
parser.add_argument(
"--params_merge",
"-pm",
......@@ -114,29 +121,10 @@ def tf2paddle(model_path,
print("Now translating model from tensorflow to paddle.")
model = TFDecoder(model_path, define_input_shape=define_input_shape)
if not without_data_format_optimization:
mapper = TFOpMapper(model)
optimizer = TFOptimizer(mapper)
# neccesary optimization
optimizer.delete_redundance_code()
# optimizer below is experimental
optimizer.optimize_elementwise_op()
optimizer.merge_activation()
optimizer.merge_bias()
optimizer.optimize_sub_graph()
# optimizer.merge_batch_norm()
# optimizer.merge_prelu()
else:
mapper = TFOpMapperNHWC(model)
optimizer = TFOptimizer(mapper)
optimizer.delete_redundance_code()
optimizer.strip_graph()
optimizer.merge_activation()
optimizer.merge_bias()
optimizer.make_nchw_input_output()
optimizer.remove_transpose()
mapper.save_inference_model(save_dir, params_merge)
mapper = TFOpMapperNHWC(model)
program.build()
program.gen_model(save_dir)
def caffe2paddle(proto, weight, save_dir, caffe_proto, params_merge=False):
......@@ -172,24 +160,26 @@ def onnx2paddle(model_path, save_dir, params_merge=False):
return
print("Now translating model from onnx to paddle.")
from x2paddle.op_mapper.onnx_op_mapper import ONNXOpMapper
from x2paddle.op_mapper.onnx2paddle.onnx_op_mapper import ONNXOpMapper
from x2paddle.decoder.onnx_decoder import ONNXDecoder
from x2paddle.optimizer.onnx_optimizer import ONNXOptimizer
import onnxruntime
model = ONNXDecoder(model_path)
mapper = ONNXOpMapper(model, save_dir)
mapper = ONNXOpMapper(model)
print("Model optimizing ...")
optimizer = ONNXOptimizer(mapper)
print("Model optimized.")
optimizer.delete_redundance_code()
print("Paddle model and code generating ...")
mapper.save_inference_model(save_dir, params_merge)
print("Paddle model and code generated.")
def paddle2onnx(model_path, save_dir):
def paddle2onnx(model_path, save_dir, opset_version=10):
from x2paddle.decoder.paddle_decoder import PaddleDecoder
from x2paddle.op_mapper.paddle_op_mapper import PaddleOpMapper
from x2paddle.op_mapper.paddle2onnx.paddle_op_mapper import PaddleOpMapper
model = PaddleDecoder(model_path, '__model__', '__params__')
mapper = PaddleOpMapper()
mapper.convert(model.program, save_dir)
mapper.convert(model.program, save_dir, opset_number=opset_version)
def main():
......@@ -211,18 +201,6 @@ def main():
assert args.framework is not None, "--framework is not defined(support tensorflow/caffe/onnx)"
assert args.save_dir is not None, "--save_dir is not defined"
if args.framework == "onnx":
try:
import onnxruntime as rt
version = rt.__version__
if version != '1.0.0':
print("[ERROR] onnxruntime==1.0.0 is required")
return
except:
print(
"[ERROR] onnxruntime is not installed, use \"pip install onnxruntime==1.0.0\"."
)
try:
import paddle
v0, v1, v2 = paddle.__version__.split('.')
......@@ -261,13 +239,14 @@ def main():
elif args.framework == "onnx":
assert args.model is not None, "--model should be defined while translating onnx model"
params_merge = False
if args.params_merge:
params_merge = True
onnx2paddle(args.model, args.save_dir, params_merge)
elif args.framework == "paddle2onnx":
assert args.model is not None, "--model should be defined while translating paddle model to onnx"
paddle2onnx(args.model, args.save_dir)
paddle2onnx(args.model, args.save_dir, args.onnx_opset)
else:
raise Exception(
......
......@@ -25,6 +25,7 @@ class Layer(object):
self.inputs = dict()
self.output = None
self.is_custom_layer = False
self.use_fluid = False
def get_code(self):
layer_code = ""
......@@ -38,6 +39,8 @@ class Layer(object):
layer_code = layer_code + self.op + "("
elif self.op == "=":
layer_code = layer_code
elif self.use_fluid:
layer_code = layer_code + "fluid." + self.op + "("
else:
layer_code = layer_code + "fluid.layers." + self.op + "("
......@@ -108,9 +111,11 @@ class FluidCode(object):
inputs,
output,
param_attr=None,
use_fluid=False,
is_custom_layer=False):
layer = Layer()
layer.op = op
layer.use_fluid = use_fluid
layer.is_custom_layer = is_custom_layer
if inputs is not None:
layer.inputs = inputs
......
......@@ -29,11 +29,14 @@ def export_paddle_param(param, param_name, dir):
"bool": [framework_pb2.VarType.BOOL, None]
}
shape = param.shape
if str(param.dtype) in ['uint8', 'uint_8', 'bool']:
param = param.astype('int64')
if len(shape) == 0:
assert param.size == 1, "Unexpected situation happend!"
shape = [1]
assert str(param.dtype) in dtype_map, "Unknown dtype of params."
assert str(
param.dtype) in dtype_map, "Unknown dtype {} of params: {}.".format(
str(param.dtype), param_name)
fp = open(os.path.join(dir, param_name), 'wb')
numpy.array([0], dtype='int32').tofile(fp)
numpy.array([0], dtype='int64').tofile(fp)
......@@ -52,6 +55,24 @@ def export_paddle_param(param, param_name, dir):
def run_net(param_dir="./"):
import os
inputs, outputs = x2paddle_net()
ops = fluid.default_main_program().global_block().ops
used_vars = list()
for op in ops:
used_vars += op.input_arg_names
tmp = list()
for input in inputs:
if isinstance(input, list):
for ipt in input:
if ipt.name not in used_vars:
continue
tmp.append(ipt)
else:
if input.name not in used_vars:
continue
tmp.append(input)
inputs = tmp
for i, out in enumerate(outputs):
if isinstance(out, list):
for out_part in out:
......@@ -119,12 +140,30 @@ class OpMapper(object):
import model
try:
inputs, outputs = model.x2paddle_net()
ops = fluid.default_main_program().global_block().ops
used_vars = list()
for op in ops:
used_vars += op.input_arg_names
for i, out in enumerate(outputs):
if isinstance(out, list):
for out_part in out:
outputs.append(out_part)
del outputs[i]
input_names = [input.name for input in inputs]
input_names = list()
for input in inputs:
if isinstance(input, list):
for ipt in input:
if ipt.name not in used_vars:
continue
input_names.append(ipt.name)
else:
if input.name not in used_vars:
continue
input_names.append(input.name)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from __future__ import division
import paddle.fluid as fluid
from paddle.fluid.proto import framework_pb2
import numpy
import collections
import sys
import os
import six
class PaddleLayer(object):
def __init__(self, kernel, inputs, outputs, **kwargs):
assert isinstance(
inputs,
dict), "parameter 'inputs' for PaddleLayer should be type of dict"
assert isinstance(
outputs,
list), "parameter 'outputs' for PaddleLayer should be type of list"
for k, v in inputs.items():
if isinstance(v, list):
for i in v:
assert isinstance(
i, six.string_types
), "value in inputs should be type of string or list of string"
else:
assert isinstance(v, six.string_types) or isinstance(
v, list
), "value in inputs should be type of string or list of string"
for v in outputs:
assert isinstance(
v, six.
string_types), "elements in outputs should be type of string"
self.kernel = kernel
self.inputs = inputs
self.outputs = outputs
self.attrs = kwargs
class PaddleProgram(object):
def __init__(self):
self.layers = list()
self.edges_out = dict()
self.edges_in = dict()
self.inputs = list()
self.outputs = list()
self.parameters = dict()
def clear(self):
self.layers = list()
self.edges_out = dict()
self.edges_in = dict()
self.inputs = list()
self.outputs = list()
self.parameters = dict()
def add_layer(self, kernel, inputs, outputs, **kwargs):
layer = PaddleLayer(kernel, inputs, outputs, **kwargs)
index = len(self.layers)
self.layers.append(layer)
return index
def build(self):
outputs_from_nodes = dict()
for i, layer in enumerate(self.layers):
for input_key, input_var in layer.inputs.items():
vs = input_var
if not isinstance(vs, list):
vs = [vs]
for v in vs:
assert v in outputs_from_nodes, "Couldn't find {} in previous layers, the layers should be make by topological sort".format(
v)
in_layer_index = outputs_from_nodes[v]
if in_layer_index not in self.edges_out:
self.edges_out[in_layer_index] = list()
self.edges_out[in_layer_index].append(i)
if i not in self.edges_in:
self.edges_in[i] = list()
self.edges_in[i].append(in_layer_index)
for output in layer.outputs:
outputs_from_nodes[output] = i
def get_layer_outputs(self, i):
return self.edges_out[i]
def get_layer_inputs(self, i):
return self.edges_in[i]
def gen_code(self, code_dir):
def write_code(f, code_list, indent=0):
indent_blank = " " * indent
for code_line in code_list:
if code_line.strip() == "":
f.write('\n')
else:
f.write(indent_blank + code_line + '\n')
if not os.path.exists(code_dir):
os.makedirs(code_dir)
f = open(os.path.join(code_dir, 'x2paddle_model.py'), 'w')
write_code(
f, [
"from paddle.fluid.initializer import Constant",
"from paddle.fluid.param_attr import ParamAttr",
"import paddle.fluid as fluid"
"", "def x2paddle_net():"
],
indent=0)
for i, layer in enumerate(self.layers):
edges_in = self.edges_in.get(i, [])
edges_out = self.edges_out.get(i, [])
if len(edges_in) == 0 and len(edges_out) == 0:
continue
line = ""
if len(layer.outputs) == 1:
line = layer.outputs[0]
else:
for output in layer.outputs:
line += "{}, ".format(output)
line = line.strip(", ")
line += " = {}(".format(layer.kernel)
for k, v in layer.inputs.items():
if isinstance(v, list):
line += "{}=[{}], ".format(k, ", ".join(v))
else:
line += "{}={}, ".format(k, v)
for k, v in layer.attrs.items():
line += "{}={}, ".format(k, v)
line = line.strip(", ")
line += ")"
write_code(f, [line], indent=1)
write_code(
f, [
"return [{}], [{}]".format(", ".join(self.inputs),
", ".join(self.outputs))
],
indent=1)
f.close()
def gen_model(self, save_dir):
code_dir = os.path.join(save_dir, 'model_with_code')
infer_dir = os.path.join(save_dir, 'inference_model')
self.gen_code(code_dir)
sys.path.append(code_dir)
import x2paddle_model
scope = fluid.Scope()
startup_program = fluid.Program()
main_program = fluid.Program()
with fluid.scope_guard(scope):
with fluid.program_guard(main_program, startup_program):
inputs, outputs = x2paddle_model.x2paddle_net()
exe = fluid.Executor(fluid.CPUPlace())
exe.run(startup_program)
param_dir = os.path.join(code_dir, 'weights')
for k, v in self.parameters.items():
if scope.find_var(k):
self.dump_parameter(k, v, param_dir)
def if_exist(var):
b = os.path.exists(
os.path.join(os.path.join(param_dir, var.name)))
return b
fluid.io.load_vars(
exe, param_dir, main_program, predicate=if_exist)
fluid.io.save_inference_model(
dirname=infer_dir,
feeded_var_names=[i.name for i in inputs],
target_vars=outputs,
executor=exe)
def dump_parameter(self, param_name, param, save_dir):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
dtype_map = {
"int16": [framework_pb2.VarType.INT16, 'h'],
"int32": [framework_pb2.VarType.INT32, 'i'],
"int64": [framework_pb2.VarType.INT64, 'q'],
"float16": [framework_pb2.VarType.FP16, 'e'],
"float32": [framework_pb2.VarType.FP32, 'f'],
"float64": [framework_pb2.VarType.FP64, 'd'],
"bool": [framework_pb2.VarType.BOOL, None]
}
shape = param.shape
if str(param.dtype) in ['uint8', 'uint_8', 'bool']:
param = param.astype('int64')
if len(shape) == 0:
assert param.size == 1, "Unexpected situation happend!"
shape = [1]
assert str(
param.dtype) in dtype_map, "Unknown dtype {} of params: {}.".format(
str(param.dtype), param_name)
fp = open(os.path.join(save_dir, param_name), 'wb')
numpy.array([0], dtype='int32').tofile(fp)
numpy.array([0], dtype='int64').tofile(fp)
numpy.array([0], dtype='int32').tofile(fp)
tensor_desc = framework_pb2.VarType.TensorDesc()
tensor_desc.data_type = dtype_map[str(param.dtype)][0]
tensor_desc.dims.extend(shape)
desc_size = tensor_desc.ByteSize()
numpy.array([desc_size], dtype='int32').tofile(fp)
fp.write(tensor_desc.SerializeToString())
param.tofile(fp)
fp.close()
......@@ -14,6 +14,7 @@
from x2paddle.core.graph import GraphNode, Graph
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_shape_inference import SymbolicShapeInference
from onnx.checker import ValidationError
from onnx.checker import check_model
from onnx.utils import polish_model
......@@ -53,7 +54,7 @@ class ONNXGraphNode(GraphNode):
convert ONNX node attributes to dict
"""
return {
attr.name: self.get_attribute_value2(attr)
attr.name: self.get_attribute_value(attr)
for attr in self.layer.attribute
}
......@@ -64,7 +65,7 @@ class ONNXGraphNode(GraphNode):
return None
return self.attr_map['value']
def get_attribute_value2(self, attr):
def get_attribute_value(self, attr):
"""
get_attribute_value enhanced
"""
......@@ -130,43 +131,90 @@ class ONNXGraphDataNode(GraphNode):
class ONNXGraph(Graph):
def __init__(self, onnx_model):
super(ONNXGraph, self).__init__(onnx_model.graph)
self.onnx_model = onnx_model
super(ONNXGraph, self).__init__(onnx_model)
self.fixed_input_shape = {}
self.initializer = {}
self.place_holder_nodes = list()
self.value_infos = {}
self.graph = onnx_model.graph
self.get_place_holder_nodes()
self.value_infos = self.inferred_model_value_info(self.model)
self.results_of_inference = dict()
print("shape inferencing ...")
self.graph = SymbolicShapeInference.infer_shapes(
onnx_model, fixed_input_shape=self.fixed_input_shape)
print("shape inferenced.")
self.build()
self.collect_value_infos()
self.allocate_shapes()
def get_inner_nodes(self):
"""
generate inner node of ONNX model
"""
inner_nodes = []
if not isinstance(self.model, onnx.GraphProto):
if not isinstance(self.graph, onnx.GraphProto):
logger.error('graph is not a GraphProto instance')
return
for initializer in self.model.initializer:
for initializer in self.graph.initializer:
name = initializer.name
inner_nodes.append(name)
return inner_nodes
def get_symbolic_shape(self, dims):
shape = []
for dim in dims:
if dim.HasField('dim_param'):
shape.append(dim.dim_param)
else:
shape.append(dim.dim_value)
return shape
def check_input_shape(self, vi):
if vi.type.HasField('tensor_type'):
for dim in vi.type.tensor_type.shape.dim:
if dim.HasField(
'dim_param') and vi.name not in self.fixed_input_shape:
shape = self.get_symbolic_shape(
vi.type.tensor_type.shape.dim)
print(
"Unknown shape for input tensor[tensor name: '{}'] -> shape: {}, Please define shape of input here,\nNote:you can use visualization tools like Netron to check input shape."
.format(vi.name, shape))
right_shape_been_input = False
while not right_shape_been_input:
try:
shape = raw_input(
"Shape of Input(e.g. -1,3,224,224), enter 'N' to skip: "
)
except:
shape = input(
"Shape of Input(e.g. -1,3,224,224), enter 'N' to skip: "
)
if shape.count("-1") > 1:
print("Only 1 dimension can be -1, type again:)")
else:
right_shape_been_input = True
if shape == 'N':
break
shape = [int(dim) for dim in shape.strip().split(',')]
assert shape.count(-1) <= 1, "Only one dimension can be -1"
self.fixed_input_shape[vi.name] = shape
break
def get_place_holder_nodes(self):
"""
generate place_holder node of ONNX model
"""
inner_nodes = self.get_inner_nodes()
input_nodes = [value.name for value in self.model.input]
for ipt_data in input_nodes:
if ipt_data not in inner_nodes:
self.place_holder_nodes.append(ipt_data)
for ipt_vi in self.graph.input:
if ipt_vi.name not in inner_nodes:
self.check_input_shape(ipt_vi)
self.place_holder_nodes.append(ipt_vi.name)
def get_output_nodes(self):
"""
generate output_nodes node of ONNX model
"""
inner_nodes = self.get_inner_nodes()
output_nodes = [value.name for value in self.model.output]
output_nodes = [value.name for value in self.graph.output]
for opt_data in output_nodes:
if opt_data not in inner_nodes:
self.output_nodes.append(opt_data)
......@@ -183,11 +231,11 @@ class ONNXGraph(Graph):
"""
build topo_sort of ONNX model
"""
for layer in self.model.node:
for layer in self.graph.node:
node = ONNXGraphNode(layer)
self.node_map[layer.name] = node
for layer in self.model.input:
for layer in self.graph.input:
if layer.name not in self.node_map:
is_place_holder = self.is_place_holder_nodes(layer.name)
self.node_map[layer.name] = ONNXGraphDataNode(
......@@ -196,7 +244,7 @@ class ONNXGraph(Graph):
is_global_input=is_place_holder)
#set data node's weight
for initializer in self.model.initializer:
for initializer in self.graph.initializer:
name = initializer.name
weight = to_array(initializer)
if name in self.node_map:
......@@ -228,7 +276,7 @@ class ONNXGraph(Graph):
continue
if in_node not in self.node_map:
flag = 0
for nd in self.model.node:
for nd in self.graph.node:
for idx, opt in enumerate(nd.output):
if opt == in_node:
self.connect(nd.name, layer_name)
......@@ -256,81 +304,68 @@ class ONNXGraph(Graph):
ipt_node.index = node.which_child[ipt_node.layer_name]
return ipt_node
def graph_weights(self, graph):
def graph_weights(self):
"""
generator for weights
"""
if not isinstance(graph, onnx.GraphProto):
if not isinstance(self.graph, onnx.GraphProto):
logger.error('graph is not a GraphProto instance')
return
for initializer in graph.initializer:
for initializer in self.graph.initializer:
name = initializer.name
weight = to_array(initializer)
yield name, weight
def inferred_model_value_info(self, graph):
def collect_value_infos(self):
"""
collect value/type info for an ONNX model
"""
assert isinstance(graph,
assert isinstance(self.graph,
onnx.GraphProto), 'model is not a ModelProto instance'
value_info = Dict()
for item in graph.value_info:
value_info[item.name] = {
for item in self.graph.value_info:
self.value_infos[item.name] = {
'dtype':
TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
'shape':
[dim.dim_value for dim in item.type.tensor_type.shape.dim],
'external': False
}
for item in graph.input:
assert item.name not in value_info
value_info[item.name] = {
'dtype':
TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
'shape':
[dim.dim_value for dim in item.type.tensor_type.shape.dim],
'external': True
}
for item in graph.output:
assert item.name not in value_info
value_info[item.name] = {
'dtype':
TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
'shape':
[dim.dim_value for dim in item.type.tensor_type.shape.dim],
'external': True
}
return value_info
def allocate_shapes(self):
"""
run shape inference
"""
for layer in self.graph.node:
node = self.node_map[layer.name]
for opt in layer.output:
if opt in self.value_infos:
value_info = self.value_infos[opt]
#if len(value_info['shape']) == 0 or value_info[
# 'dtype'] is None or 0 in value_info['shape']:
# #TODO add node shape inference
node.dtype = value_info['dtype']
node.out_shapes.append(value_info['shape'])
else:
node.out_shapes.append([])
class ONNXDecoder(object):
def __init__(self, onnx_model):
model = onnx.load(onnx_model)
onnx_model = onnx.load(onnx_model)
print('model ir_version: {}, op version: {}'.format(
model.ir_version, model.opset_import[0].version))
if model.opset_import[0].version < 9:
_logger.warning(
'Now, onnx2paddle support convert onnx model opset_verison == 9,'
'opset_verison of your onnx model is %d < 9,'
'some operator maybe unsuccessful in convertion.',
model.opset_import[0].version)
check_model(model)
self.check_model_running_state(onnx_model)
model = onnx.shape_inference.infer_shapes(model)
model = self.optimize_model_skip_op_for_inference(model)
model = self.optimize_model_strip_initializer(model)
self.standardize_variable_name(model.graph)
self.model = model
graph = model.graph
self.onnx_graph = ONNXGraph(model)
self.onnx_graph.build()
onnx_model.ir_version, onnx_model.opset_import[0].version))
self.op_set = onnx_model.opset_import[0].version
check_model(onnx_model)
onnx_model = self.optimize_model_skip_op(onnx_model)
onnx_model = self.optimize_model_strip_initializer(onnx_model)
onnx_model = self.optimize_node_name(onnx_model)
self.graph = ONNXGraph(onnx_model)
#self.onnx_model = onnx_model
def build_value_refs(self, nodes):
"""
......@@ -373,14 +408,13 @@ class ONNXDecoder(object):
processed += 1
return processed
def optimize_model_skip_op_for_inference(self, model, op_list=None):
def optimize_model_skip_op(self, model, op_list=None):
"""
skip ops can be bypassed for inference
"""
nodes = model.graph.node
if op_list is None:
op_list = ['Dropout']
nodes = model.graph.node
input_refs, output_refs = self.build_value_refs(nodes)
ret = type(model)()
ret.CopyFrom(model)
......@@ -473,38 +507,11 @@ class ONNXDecoder(object):
name = name.replace(s, '_')
return 'x2paddle_' + name
def check_model_running_state(self, model_path):
import onnxruntime as rt
model = onnx.load(model_path)
model = onnx.shape_inference.infer_shapes(model)
if len(model.graph.value_info) < len(model.graph.node) - 1:
_logger.warning(
'During conversion of your model, some operators will be assignd node.out_shape==None, '
'refer to https://github.com/onnx/onnx/blob/master/docs/ShapeInference.md'
)
try:
datatype_map = {
'tensor(int64)': 'int',
'tensor(float)': 'float32',
'tensor(int32)': 'int32'
}
input_dict = {}
sess = rt.InferenceSession(model_path)
for ipt in sess.get_inputs():
datatype = datatype_map[ipt.type]
input_dict[ipt.name] = np.random.random(ipt.shape).astype(
datatype)
res = sess.run(None, input_feed=input_dict)
except:
raise Exception(
"onnxruntime inference onnx model failed, Please confirm the correctness of onnx model by onnxruntime, if onnx model is correct, please submit issue in github."
)
def standardize_variable_name(self, graph):
def optimize_node_name(self, model):
"""
standardize variable name for paddle's code
"""
graph = model.graph
for initializer in graph.initializer:
initializer.name = self.make_variable_name(initializer.name)
for ipt in graph.input:
......@@ -523,3 +530,4 @@ class ONNXDecoder(object):
node.input[i] = self.make_variable_name(node.input[i])
for i in range(len(node.output)):
node.output[i] = self.make_variable_name(node.output[i])
return model
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Reference Code from https://github.com/microsoft/onnxruntime, Licensed under the MIT License.
# -*- coding: UTF-8 -*-
import argparse
import numpy as np
import onnx
import sys
from onnx import helper, numpy_helper, shape_inference
import sympy
from packaging import version
assert version.parse(onnx.__version__) >= version.parse("1.5.0")
def get_attribute(node, attr_name, default_value=None):
found = [attr for attr in node.attribute if attr.name == attr_name]
if found:
return helper.get_attribute_value(found[0])
return default_value
def get_dim_from_type_proto(dim):
return getattr(dim, dim.WhichOneof('value')) if type(
dim.WhichOneof('value')) == str else None
def get_shape_from_type_proto(type_proto):
return [
get_dim_from_type_proto(d) for d in type_proto.tensor_type.shape.dim
]
def get_shape_from_sympy_shape(sympy_shape):
sympy_shape = [
None if i is None else (int(i) if is_literal(i) else str(i))
for i in sympy_shape
]
return sympy_shape
def is_literal(dim):
return type(dim) in [int, np.int64, np.int32, sympy.Integer] or (
hasattr(dim, 'is_number') and
dim.is_number) # or (hasattr(dim, 'is_integer') and dim.is_integer)
def handle_negative_axis(axis, rank):
assert axis < rank and axis >= -rank
return axis if axis >= 0 else rank + axis
def get_opset(mp, domain=['', 'onnx', 'ai.onnx']):
if type(domain) != list:
domain = [domain]
for opset in mp.opset_import:
if opset.domain in domain:
return opset.version
return None
def as_scalar(x):
if type(x) == list:
assert len(x) == 1
return x[0]
elif type(x) == np.ndarray:
return np.asscalar(x)
else:
return x
def as_list(x, keep_none):
if type(x) == list:
return x
elif type(x) == np.ndarray:
return list(x)
elif keep_none and x is None:
return None
else:
return [x]
def sympy_reduce_product(x):
if type(x) == list:
value = sympy.Integer(1)
for v in x:
value = value * v
else:
value = x
return value
class SymbolicShapeInference:
def __init__(self, int_max, auto_merge, guess_output_rank, verbose):
self.dispatcher_ = {
'Add': self._infer_symbolic_compute_ops,
'ArrayFeatureExtractor': self._infer_ArrayFeatureExtractor,
'AveragePool': self._infer_Pool,
'Cast': self._infer_Cast,
'CategoryMapper': self._infer_CategoryMapper,
'Compress': self._infer_Compress,
'Concat': self._infer_Concat,
'ConstantOfShape': self._infer_ConstantOfShape,
'Conv': self._infer_Conv,
'CumSum': self._pass_on_shape_and_type,
'Div': self._infer_symbolic_compute_ops,
'Expand': self._infer_Expand,
'Equal': self._infer_symbolic_compute_ops,
'Gather': self._infer_Gather,
'GatherElements': self._infer_GatherElements,
'GatherND': self._infer_GatherND,
'If': self._infer_If,
'Loop': self._infer_Loop,
'MatMul': self._infer_MatMul,
'MatMulInteger16': self._infer_MatMulInteger,
'MaxPool': self._infer_Pool,
'Max': self._infer_symbolic_compute_ops,
'Min': self._infer_symbolic_compute_ops,
'Mul': self._infer_symbolic_compute_ops,
'NonMaxSuppression': self._infer_NonMaxSuppression,
'NonZero': self._infer_NonZero,
'OneHot': self._infer_OneHot,
'Pad': self._infer_Pad,
'Range': self._infer_Range,
'ReduceProd': self._infer_ReduceProd,
'Reshape': self._infer_Reshape,
'Resize': self._infer_Resize,
'Round': self._pass_on_shape_and_type,
'Scan': self._infer_Scan,
'ScatterElements': self._infer_ScatterElements,
'Shape': self._infer_Shape,
'Size': self._infer_Size,
'Slice': self._infer_Slice,
'Split': self._infer_Split,
'Squeeze': self._infer_Squeeze,
'Sub': self._infer_symbolic_compute_ops,
'Tile': self._infer_Tile,
'TopK': self._infer_TopK,
'Unsqueeze': self._infer_Unsqueeze,
'Where': self._infer_symbolic_compute_ops,
'Transpose': self._infer_Transpose,
'ZipMap': self._infer_ZipMap
}
self.run_ = True
self.suggested_merge_ = {}
self.symbolic_dims_ = {}
self.input_symbols_ = {}
self.auto_merge_ = auto_merge
self.guess_output_rank_ = guess_output_rank
self.verbose_ = verbose
self.int_max_ = int_max
def _add_suggested_merge(self, symbols, apply=False):
assert all([(type(s) == str and s in self.symbolic_dims_) or
is_literal(s) for s in symbols])
symbols = set(symbols)
for k, v in self.suggested_merge_.items():
if k in symbols:
symbols.remove(k)
symbols.add(v)
map_to = None
# if there is literal, map to it first
for s in symbols:
if is_literal(s):
map_to = s
break
# when no literals, map to input symbolic dims, then existing symbolic dims
if map_to is None:
for s in symbols:
if s in self.input_symbols_:
map_to = s
break
if map_to is None:
for s in symbols:
if type(self.symbolic_dims_[s]) == sympy.Symbol:
map_to = s
break
# when nothing to map to, use the shorter one
if map_to is None:
if self.verbose_ > 0:
print(
'Potential unsafe merge between symbolic expressions: ({})'.
format(','.join(symbols)))
symbols_list = list(symbols)
lens = [len(s) for s in symbols_list]
map_to = symbols_list[lens.index(min(lens))]
symbols.remove(map_to)
for s in symbols:
if s == map_to:
continue
if is_literal(map_to) and is_literal(s):
assert int(map_to) == int(s)
self.suggested_merge_[s] = int(map_to) if is_literal(
map_to) else map_to
for k, v in self.suggested_merge_.items():
if v == s:
self.suggested_merge_[k] = map_to
if apply and self.auto_merge_:
self._apply_suggested_merge()
def _apply_suggested_merge(self, graph_input_only=False):
if not self.suggested_merge_:
return
for i in list(self.out_mp_.graph.input) + (
[] if graph_input_only else list(self.out_mp_.graph.value_info)):
for d in i.type.tensor_type.shape.dim:
if d.dim_param in self.suggested_merge_:
v = self.suggested_merge_[d.dim_param]
if is_literal(v):
d.dim_value = int(v)
else:
d.dim_param = v
def _preprocess(self, in_mp, input_shapes=None):
out_mp = onnx.ModelProto()
out_mp.CopyFrom(in_mp)
out_mp.graph.ClearField('node')
self.out_mp_ = out_mp
defined = set([
i.name
for i in list(in_mp.graph.input) + list(in_mp.graph.initializer)
])
pending_nodes = []
# returns True if no more ready nodes
def _insert_ready_nodes():
ready_nodes = [
pn for pn in pending_nodes
if all([i in defined for i in pn.input if i])
]
for rn in ready_nodes:
self.out_mp_.graph.node.add().CopyFrom(rn)
for o in rn.output:
defined.add(o)
pending_nodes.remove(rn)
return not ready_nodes
# constant op -> initializer, topological sort
for in_n in in_mp.graph.node:
if in_n.op_type == 'Constant':
t = get_attribute(in_n, 'value')
t.name = in_n.output[0]
self.out_mp_.graph.initializer.add().CopyFrom(t)
defined.add(t.name)
else:
pending_nodes.append(in_n)
_insert_ready_nodes()
while pending_nodes:
if _insert_ready_nodes():
break
if pending_nodes and self.verbose_ > 0:
print('SymbolicShapeInference: orphaned nodes discarded: ')
print(
* [n.op_type + ': ' + n.output[0] for n in pending_nodes],
sep='\n')
if input_shapes is not None:
for input_name, shape in input_shapes.items():
for idx in range(len(self.out_mp_.graph.input)):
if self.out_mp_.graph.input[idx].name == input_name:
value_info = self.out_mp_.graph.input[idx]
del self.out_mp_.graph.input[idx]
self.out_mp_.graph.input.append(
helper.make_tensor_value_info(
value_info.name,
value_info.type.tensor_type.elem_type, shape))
self.initializers_ = dict(
[(i.name, i) for i in self.out_mp_.graph.initializer])
self.known_vi_ = dict(
[(i.name, i) for i in list(self.out_mp_.graph.input)])
self.known_vi_.update(
dict([(i.name, helper.make_tensor_value_info(i.name, i.data_type,
list(i.dims)))
for i in self.out_mp_.graph.initializer]))
def _merge_symbols(self, dims):
if not all([type(d) == str for d in dims]):
if self.auto_merge_:
assert len(
dims
) == 2 # only allow symbol->int merge in binary ops for now
is_int = [is_literal(d) for d in dims]
if sum(is_int) == 1:
int_dim = is_int.index(1)
if self.verbose_ > 0:
print('dim {} has been merged with value {}'.format(
dims[1 - int_dim], dims[int_dim]))
self._check_merged_dims(dims, allow_broadcast=False)
return dims[int_dim]
else:
if self.verbose_ > 0:
print('dim {} has been mergd with dim {}'.format(dims[
0], dims[1]))
return dims[0]
else:
return None
if all([d == dims[0] for d in dims]):
return dims[0]
merged = [
self.suggested_merge_[d] if d in self.suggested_merge_ else d
for d in dims
]
if all([d == merged[0] for d in merged]):
assert merged[0] in self.symbolic_dims_
return merged[0]
else:
return None
# broadcast from right to left, and merge symbolic dims if needed
def _broadcast_shapes(self, shape1, shape2):
new_shape = []
rank1 = len(shape1)
rank2 = len(shape2)
new_rank = max(rank1, rank2)
for i in range(new_rank):
dim1 = shape1[rank1 - 1 - i] if i < rank1 else 1
dim2 = shape2[rank2 - 1 - i] if i < rank2 else 1
if dim1 == 1 or dim1 == dim2:
new_dim = dim2
elif dim2 == 1:
new_dim = dim1
else:
new_dim = self._merge_symbols([dim1, dim2])
if not new_dim:
# warning about unsupported broadcast when not auto merge
# note that auto merge has the risk of incorrectly merge symbols while one of them being 1
# for example, 'a' = 1, 'b' = 5 at runtime is valid broadcasting, but with auto merge 'a' == 'b'
if self.auto_merge_:
self._add_suggested_merge([dim1, dim2], apply=True)
else:
print('unsupported broadcast between ' + str(dim1) + ' '
+ str(dim2))
new_shape = [new_dim] + new_shape
return new_shape
def _get_shape(self, node, idx):
name = node.input[idx]
shape = []
if name in self.known_vi_:
shape = get_shape_from_type_proto(self.known_vi_[name].type)
elif name in self.initializers_:
assert name in self.initializers_
shape = list(self.initializers_[name].dims)
return shape
def _get_initializer_value(self, node, idx):
name = node.input[idx]
if name in self.initializers_:
value = numpy_helper.to_array(self.initializers_[name])
return value
else:
return False
def _get_shape_rank(self, node, idx):
return len(self._get_shape(node, idx))
def _get_sympy_shape(self, node, idx):
sympy_shape = []
for d in self._get_shape(node, idx):
if type(d) is str:
sympy_shape.append(self.symbolic_dims_[d] if d in
self.symbolic_dims_ else sympy.Symbol(
d, integer=True))
else:
assert None != d
sympy_shape.append(d)
return sympy_shape
def _get_value(self, node, idx):
name = node.input[idx]
assert name in self.sympy_data_ or name in self.initializers_
return self.sympy_data_[
name] if name in self.sympy_data_ else numpy_helper.to_array(
self.initializers_[name])
def _try_get_value(self, node, idx):
if idx >= len(node.input):
return None
name = node.input[idx]
if name in self.sympy_data_ or name in self.initializers_:
return self._get_value(node, idx)
return None
def _update_computed_dims(self, new_sympy_shape):
for i, new_dim in enumerate(new_sympy_shape):
if not is_literal(new_dim) and not type(new_dim) == str:
str_dim = str(new_dim)
if str_dim in self.suggested_merge_:
new_sympy_shape[i] = self.symbolic_dims_[
self.suggested_merge_[str_dim]]
else:
# add new_dim if it's a computational expression
if not str(new_dim) in self.symbolic_dims_:
self.symbolic_dims_[str(new_dim)] = new_dim
def _onnx_infer_single_node(self, node):
# skip onnx shape inference for Scan/Loop
skip_infer = node.op_type in ['Scan', 'Loop']
if not skip_infer:
# run single node inference with self.known_vi_ shapes
# note that inference rely on initializer values is not handled
# as we don't copy initializer weights to tmp_graph for inference speed purpose
tmp_graph = helper.make_graph(
[node], 'tmp', [self.known_vi_[i] for i in node.input if i], [
helper.make_tensor_value_info(i, onnx.TensorProto.UNDEFINED,
None) for i in node.output
])
self.tmp_mp_.graph.CopyFrom(tmp_graph)
self.tmp_mp_ = shape_inference.infer_shapes(self.tmp_mp_)
for i_o in range(len(node.output)):
o = node.output[i_o]
vi = self.out_mp_.graph.value_info.add()
if not skip_infer:
vi.CopyFrom(self.tmp_mp_.graph.output[i_o])
self.known_vi_[o] = vi
def _onnx_infer_subgraph(self, node, subgraph, use_node_input=True):
if self.verbose_ > 2:
print('Inferencing subgraph of node {} with output({}...): {}'.
format(node.name, node.output[0], node.op_type))
# node inputs are not passed directly to the subgraph
# it's up to the node dispatcher to prepare subgraph input
# for example, with Scan/Loop, subgraph input shape would be trimmed from node input shape
# besides, inputs in subgraph could shadow implicit inputs
subgraph_inputs = set([
i.name for i in list(subgraph.initializer) + list(subgraph.input)
])
subgraph_implicit_input = set([
name for name in self.known_vi_.keys()
if not name in subgraph_inputs
])
tmp_graph = helper.make_graph(
list(subgraph.node), 'tmp',
list(subgraph.input) +
[self.known_vi_[i] for i in subgraph_implicit_input], [
helper.make_tensor_value_info(i.name,
onnx.TensorProto.UNDEFINED, None)
for i in subgraph.output
])
tmp_graph.initializer.extend([
i for i in self.out_mp_.graph.initializer
if i.name in subgraph_implicit_input
])
tmp_graph.initializer.extend(subgraph.initializer)
self.tmp_mp_.graph.CopyFrom(tmp_graph)
symbolic_shape_inference = SymbolicShapeInference(
self.int_max_, self.auto_merge_, self.guess_output_rank_,
self.verbose_)
all_shapes_inferred = False
symbolic_shape_inference._preprocess(self.tmp_mp_)
symbolic_shape_inference.suggested_merge_ = self.suggested_merge_.copy()
while symbolic_shape_inference.run_:
all_shapes_inferred = symbolic_shape_inference._infer_impl(
self.tmp_mp_, self.sympy_data_.copy())
symbolic_shape_inference._update_output_from_vi()
if use_node_input:
# if subgraph uses node input, it needs to update to merged dims
subgraph.ClearField('input')
subgraph.input.extend(
symbolic_shape_inference.out_mp_.graph.input[:len(node.input)])
subgraph.ClearField('output')
subgraph.output.extend(symbolic_shape_inference.out_mp_.graph.output)
subgraph.ClearField('value_info')
subgraph.value_info.extend(
symbolic_shape_inference.out_mp_.graph.value_info)
subgraph.ClearField('node')
subgraph.node.extend(symbolic_shape_inference.out_mp_.graph.node)
# for new symbolic dims from subgraph output, add to main graph symbolic dims
subgraph_shapes = [
get_shape_from_type_proto(o.type)
for o in symbolic_shape_inference.out_mp_.graph.output
]
subgraph_new_symbolic_dims = set([
d for s in subgraph_shapes
if s for d in s if type(d) == str and not d in self.symbolic_dims_
])
new_dims = {}
for d in subgraph_new_symbolic_dims:
assert d in symbolic_shape_inference.symbolic_dims_
new_dims[d] = symbolic_shape_inference.symbolic_dims_[d]
self.symbolic_dims_.update(new_dims)
return symbolic_shape_inference
def _get_int_values(self, node, broadcast=False):
values = [self._try_get_value(node, i) for i in range(len(node.input))]
if all([v is not None for v in values]):
# some shape compute is in floating point, cast to int for sympy
for i, v in enumerate(values):
if type(v) != np.ndarray:
continue
if len(v.shape) > 1:
new_v = None # ignore value for rank > 1
elif len(v.shape) == 0:
new_v = int(np.asscalar(v))
else:
assert len(v.shape) == 1
new_v = [int(vv) for vv in v]
values[i] = new_v
values_len = [len(v) if type(v) == list else 0 for v in values]
max_len = max(values_len)
if max_len >= 1 and broadcast:
# broadcast
for i, v in enumerate(values):
if v is None:
continue # don't broadcast if value is unknown
if type(v) == list:
if len(v) < max_len:
values[i] = v * max_len
else:
assert len(v) == max_len
else:
values[i] = [v] * max_len
return values
def _compute_on_sympy_data(self, node, op_func):
assert len(node.output) == 1
values = self._get_int_values(node, broadcast=True)
if all([v is not None for v in values]):
new_shape = []
is_list = [type(v) == list for v in values]
as_list = any(is_list)
if as_list:
data = [op_func(vs) for vs in zip(*values)]
self.sympy_data_[node.output[0]] = data
new_shape = np.array(data).shape
else:
data = op_func(values)
self.sympy_data_[node.output[0]] = data
new_shape = np.array(data).shape
vi = self.known_vi_[node.output[0]]
#print(node.output[0])
#print(new_shape)
#vi.CopyFrom(helper.make_tensor_value_info(node.output[0], self.known_vi_[node.input[0]].type.tensor_type.elem_type, list(new_shape)))
def _pass_on_sympy_data(self, node):
assert len(node.input) == 1 or node.op_type == 'Reshape'
self._compute_on_sympy_data(node, lambda x: x[0])
def _pass_on_shape_and_type(self, node):
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[0], self.known_vi_[
node.input[0]].type.tensor_type.elem_type,
self._get_shape(node, 0)))
def _new_symbolic_dim(self, prefix, dim):
new_dim = '{}_d{}'.format(prefix, dim)
if new_dim in self.suggested_merge_:
v = self.suggested_merge_[new_dim]
new_dim = sympy.Integer(int(v)) if is_literal(v) else v
else:
self.symbolic_dims_[new_dim] = sympy.Symbol(new_dim, integer=True)
return new_dim
def _new_symbolic_dim_from_output(self, node, out_idx=0, dim=0):
return self._new_symbolic_dim('{}{}_o{}_'.format(
node.op_type, list(self.out_mp_.graph.node).index(node), out_idx),
dim)
def _new_symbolic_shape(self, rank, node, out_idx=0):
return [
self._new_symbolic_dim_from_output(node, out_idx, i)
for i in range(rank)
]
def _compute_conv_pool_shape(self, node):
sympy_shape = self._get_sympy_shape(node, 0)
if len(node.input) > 1:
W_shape = self._get_sympy_shape(node, 1)
rank = len(W_shape) - 2 # number of spatial axes
kernel_shape = W_shape[-rank:]
sympy_shape[1] = W_shape[0]
else:
W_shape = None
kernel_shape = get_attribute(node, 'kernel_shape')
rank = len(kernel_shape)
assert len(sympy_shape) == rank + 2
# only need to symbolic shape inference if input has symbolic dims in spatial axes
is_symbolic_dims = [not is_literal(i) for i in sympy_shape[-rank:]]
if not any(is_symbolic_dims):
shape = get_shape_from_type_proto(self.known_vi_[node.output[0]]
.type)
if len(shape) > 0:
assert len(sympy_shape) == len(shape)
sympy_shape[-rank:] = [sympy.Integer(d) for d in shape[-rank:]]
return sympy_shape
dilations = get_attribute(node, 'dilations', [1] * rank)
strides = get_attribute(node, 'strides', [1] * rank)
effective_kernel_shape = [(k - 1) * d + 1
for k, d in zip(kernel_shape, dilations)]
pads = get_attribute(node, 'pads')
if pads is None:
pads = [0] * (2 * rank)
auto_pad = get_attribute(node, 'auto_pad',
b'NOTSET').decode('utf-8')
if auto_pad != 'VALID' and auto_pad != 'NOTSET':
try:
residual = [
sympy.Mod(d, s)
for d, s in zip(sympy_shape[-rank:], strides)
]
total_pads = [
max(0, (k - s) if r == 0 else (k - r))
for k, s, r in zip(effective_kernel_shape, strides,
residual)
]
except TypeError: # sympy may throw TypeError: cannot determine truth value of Relational
total_pads = [
max(0, (k - s))
for k, s in zip(effective_kernel_shape, strides)
] # assuming no residual if sympy throws error
elif auto_pad == 'VALID':
total_pads = []
else:
total_pads = [0] * rank
else:
assert len(pads) == 2 * rank
total_pads = [p1 + p2 for p1, p2 in zip(pads[:rank], pads[rank:])]
ceil_mode = get_attribute(node, 'ceil_mode', 0)
for i in range(rank):
effective_input_size = sympy_shape[-rank + i]
if len(total_pads) > 0:
effective_input_size = effective_input_size + total_pads[i]
if ceil_mode:
strided_kernel_positions = sympy.ceiling(
(effective_input_size - effective_kernel_shape[i]) /
strides[i])
else:
strided_kernel_positions = (
effective_input_size - effective_kernel_shape[i]
) // strides[i]
sympy_shape[-rank + i] = strided_kernel_positions + 1
return sympy_shape
def _check_merged_dims(self, dims, allow_broadcast=True):
if allow_broadcast:
dims = [d for d in dims if not (is_literal(d) and int(d) <= 1)]
if not all([d == dims[0] for d in dims]):
self._add_suggested_merge(dims, apply=True)
def _compute_matmul_shape(self, node, output_dtype=None):
lhs_shape = self._get_shape(node, 0)
rhs_shape = self._get_shape(node, 1)
lhs_rank = len(lhs_shape)
rhs_rank = len(rhs_shape)
lhs_reduce_dim = 0
rhs_reduce_dim = 0
assert lhs_rank > 0 and rhs_rank > 0
if lhs_rank == 1 and rhs_rank == 1:
new_shape = []
elif lhs_rank == 1:
rhs_reduce_dim = -2
new_shape = rhs_shape[:rhs_reduce_dim] + [rhs_shape[-1]]
elif rhs_rank == 1:
lhs_reduce_dim = -1
new_shape = lhs_shape[:lhs_reduce_dim]
else:
lhs_reduce_dim = -1
rhs_reduce_dim = -2
new_shape = self._broadcast_shapes(
lhs_shape[:-2], rhs_shape[:-2]) + [lhs_shape[-2]
] + [rhs_shape[-1]]
# merge reduce dim
self._check_merged_dims(
[lhs_shape[lhs_reduce_dim], rhs_shape[rhs_reduce_dim]],
allow_broadcast=False)
if output_dtype is None:
# infer output_dtype from input type when not specified
output_dtype = self.known_vi_[node.input[
0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[0], output_dtype,
new_shape))
def _infer_ArrayFeatureExtractor(self, node):
data_shape = self._get_shape(node, 0)
indices_shape = self._get_shape(node, 1)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[0], self.known_vi_[
node.input[0]].type.tensor_type.elem_type, data_shape[:-1] +
indices_shape))
def _infer_symbolic_compute_ops(self, node):
funcs = {
'Add': lambda l: l[0] + l[1],
'Div': lambda l: l[0] // l[1], # integer div in sympy
'Equal': lambda l: l[0] == l[1],
'Max':
lambda l: l[1] if is_literal(l[0]) and int(l[0]) < -self.int_max_ else (l[0] if is_literal(l[1]) and int(l[1]) < -self.int_max_ else sympy.Max(l[0], l[1])),
'Min':
lambda l: l[1] if is_literal(l[0]) and int(l[0]) > self.int_max_ else (l[0] if is_literal(l[1]) and int(l[1]) > self.int_max_ else sympy.Min(l[0], l[1])),
'Mul': lambda l: l[0] * l[1],
'Sub': lambda l: l[0] - l[1],
'Where': lambda l: l[1] if l[0] else l[2]
}
assert node.op_type in funcs
self._compute_on_sympy_data(node, funcs[node.op_type])
def _infer_Cast(self, node):
self._pass_on_sympy_data(node)
def _infer_CategoryMapper(self, node):
input_type = self.known_vi_[node.input[0]].type.tensor_type.elem_type
if input_type == onnx.TensorProto.STRING:
output_type = onnx.TensorProto.INT64
else:
output_type = onnx.TensorProto.STRING
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[0], output_type,
self._get_shape(node, 0)))
def _infer_Transpose(self, node):
input_shape = self._get_shape(node, 0)
perm = get_attribute(node, 'perm')
output_shape = np.array(input_shape)[perm].tolist()
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[0], self.known_vi_[
node.input[0]].type.tensor_type.elem_type, output_shape))
def _infer_Compress(self, node):
input_shape = self._get_shape(node, 0)
# create a new symbolic dimension for Compress output
compress_len = self._new_symbolic_dim_from_output(node)
axis = get_attribute(node, 'axis')
if axis == None:
# when axis is not specified, input is flattened before compress so output is 1D
output_shape = [compress_len]
else:
output_shape = input_shape
output_shape[handle_negative_axis(axis, len(
input_shape))] = compress_len
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[0], self.known_vi_[
node.input[0]].type.tensor_type.elem_type, output_shape))
def _infer_Concat(self, node):
if any([i in self.sympy_data_ for i in node.input]):
values = self._get_int_values(node)
if all([v is not None for v in values]):
assert 0 == get_attribute(node, 'axis')
self.sympy_data_[node.output[0]] = []
for i in range(len(node.input)):
value = values[i]
if type(value) == list:
self.sympy_data_[node.output[0]].extend(value)
else:
self.sympy_data_[node.output[0]].append(value)
sympy_shape = self._get_sympy_shape(node, 0)
axis = handle_negative_axis(
get_attribute(node, 'axis'), len(sympy_shape))
for i_idx in range(1, len(node.input)):
input_shape = self._get_sympy_shape(node, i_idx)
if input_shape:
sympy_shape[axis] = sympy_shape[axis] + input_shape[axis]
self._update_computed_dims(sympy_shape)
# merge symbolic dims for non-concat axes
for d in range(len(sympy_shape)):
if d == axis:
continue
dims = [
self._get_shape(node, i_idx)[d]
for i_idx in range(len(node.input))
if self._get_shape(node, i_idx)
]
if all([d == dims[0] for d in dims]):
continue
merged = self._merge_symbols(dims)
if type(merged) == str:
sympy_shape[d] = self.symbolic_dims_[merged] if merged else None
else:
sympy_shape[d] = merged
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0], self.known_vi_[node.input[0]].type.tensor_type.
elem_type, get_shape_from_sympy_shape(sympy_shape)))
def _infer_Conv(self, node):
sympy_shape = self._compute_conv_pool_shape(node)
self._update_computed_dims(sympy_shape)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0], vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(sympy_shape)))
def _infer_ConstantOfShape(self, node):
sympy_shape = self._get_int_values(node)[0]
vi = self.known_vi_[node.output[0]]
if sympy_shape is not None:
if type(sympy_shape) != list:
sympy_shape = [sympy_shape]
self._update_computed_dims(sympy_shape)
# update sympy data if output type is int, and shape is known
if vi.type.tensor_type.elem_type == onnx.TensorProto.INT64 and all(
[is_literal(x) for x in sympy_shape]):
self.sympy_data_[node.output[0]] = np.ones(
[int(x) for x in sympy_shape],
dtype=np.int64) * numpy_helper.to_array(
get_attribute(node, 'value', 0))
else:
# create new dynamic shape
sympy_shape = self._new_symbolic_shape(
self._get_shape_rank(node, 0), node)
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0], vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(sympy_shape)))
def _infer_Expand(self, node):
expand_to_shape = self._try_get_value(node, 1)
if expand_to_shape is not None:
# new_shape's dim can come from shape value
self._update_computed_dims(expand_to_shape)
shape = self._get_shape(node, 0)
new_shape = self._broadcast_shapes(
shape, get_shape_from_sympy_shape(expand_to_shape))
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[0], self.known_vi_[
node.input[0]].type.tensor_type.elem_type, new_shape))
def _infer_Gather(self, node):
data_shape = self._get_shape(node, 0)
axis = handle_negative_axis(
get_attribute(node, 'axis', 0), len(data_shape))
indices_shape = self._get_shape(node, 1)
#if indices_shape == []:
# value = self._get_initializer_value(node, 1)
# if isinstance(value.tolist(), int):
# indices_shape = [1]
new_shape = data_shape[:axis] + indices_shape + data_shape[axis + 1:]
#print(new_shape)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[
0], vi.type.tensor_type.elem_type, new_shape))
if node.input[0] in self.sympy_data_:
assert 0 == get_attribute(node, 'axis',
0) # only handle 1D sympy compute
idx = self._get_value(node, 1)
data = self.sympy_data_[node.input[0]]
if type(data) == list:
if type(idx) == np.ndarray and len(idx.shape) == 1:
self.sympy_data_[node.output[0]] = [
data[int(i)] for i in idx
]
else:
self.sympy_data_[node.output[0]] = data[int(idx)]
else:
assert idx == 0
self.sympy_data_[node.output[0]] = data
def _infer_GatherElements(self, node):
indices_shape = self._get_shape(node, 1)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[0], self.known_vi_[
node.input[0]].type.tensor_type.elem_type, indices_shape))
def _infer_GatherND(self, node):
data_shape = self._get_shape(node, 0)
data_rank = len(data_shape)
indices_shape = self._get_shape(node, 1)
indices_rank = len(indices_shape)
last_index_dimension = indices_shape[-1]
assert is_literal(
last_index_dimension) and last_index_dimension <= data_rank
new_shape = indices_shape[:-1] + data_shape[last_index_dimension:]
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[0], self.known_vi_[
node.input[0]].type.tensor_type.elem_type, new_shape))
def _infer_If(self, node):
# special case for constant condition, in case there are mismatching shape from the non-executed branch
subgraphs = [
get_attribute(node, 'then_branch'),
get_attribute(node, 'else_branch')
]
cond = self._try_get_value(node, 0)
if cond is not None:
if cond > 0:
subgraphs[1].CopyFrom(subgraphs[0])
else:
subgraphs[0].CopyFrom(subgraphs[1])
for i_sub, subgraph in enumerate(subgraphs):
subgraph_infer = self._onnx_infer_subgraph(
node, subgraph, use_node_input=False)
for i_out in range(len(node.output)):
vi = self.known_vi_[node.output[i_out]]
if i_sub == 0:
vi.CopyFrom(subgraph.output[i_out])
vi.name = node.output[i_out]
else:
assert all([
d1 == d2
for d1, d2 in zip(vi.type.tensor_type.shape.dim,
subgraph.output[
i_out].type.tensor_type.shape.dim)
])
# pass on sympy data from subgraph, if cond is constant
if cond is not None and i_sub == (0 if cond > 0 else 1):
if subgraph.output[
i_out].name in subgraph_infer.sympy_data_:
self.sympy_data_[vi.name] = subgraph_infer.sympy_data_[
subgraph.output[i_out].name]
def _infer_Loop(self, node):
subgraph = get_attribute(node, 'body')
assert len(subgraph.input) == len(node.input)
for i, si in enumerate(subgraph.input):
subgraph_name = si.name
si.CopyFrom(self.known_vi_[node.input[i]])
si.name = subgraph_name
self._onnx_infer_subgraph(node, subgraph)
# create a new symbolic dimension for iteration dependent dimension
loop_iter_dim = self._new_symbolic_dim_from_output(node)
num_loop_carried = len(node.input) - 2
for i in range(len(node.output)):
vi = self.known_vi_[node.output[i]]
vi.CopyFrom(
subgraph.output[i + 1]
) # first subgraph output is condition, not in node output
if i >= num_loop_carried:
subgraph_vi_dim = subgraph.output[i +
1].type.tensor_type.shape.dim
vi.type.tensor_type.shape.ClearField('dim')
vi_dim = vi.type.tensor_type.shape.dim
vi_dim.add().dim_param = loop_iter_dim
vi_dim.extend(list(subgraph_vi_dim))
vi.name = node.output[i]
def _infer_MatMul(self, node):
self._compute_matmul_shape(node)
def _infer_MatMulInteger(self, node):
self._compute_matmul_shape(node, onnx.TensorProto.INT32)
def _infer_NonMaxSuppression(self, node):
selected = self._new_symbolic_dim_from_output(node)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[
0], onnx.TensorProto.INT64, [selected, 3]))
def _infer_NonZero(self, node):
input_rank = self._get_shape_rank(node, 0)
# create a new symbolic dimension for NonZero output
nz_len = self._new_symbolic_dim_from_output(node, 0, 1)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[
0], vi.type.tensor_type.elem_type, [input_rank, nz_len]))
def _infer_OneHot(self, node):
shape = self._get_shape(node, 0)
axis = get_attribute(node, 'axis', -1)
axis = handle_negative_axis(axis, len(shape) + 1)
new_shape = shape[:axis] + [self._new_symbolic_dim_from_output(node)
] + shape[axis:]
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[0], self.known_vi_[
node.input[2]].type.tensor_type.elem_type, new_shape))
def _infer_Pad(self, node):
if get_opset(self.out_mp_) <= 10:
pads = get_attribute(node, 'pads')
else:
pads = self._try_get_value(node, 1)
vi = self.known_vi_[node.output[0]]
output_shape = get_shape_from_type_proto(vi.type)
if len(output_shape) == 0 or None in output_shape:
sympy_shape = self._get_sympy_shape(node, 0)
rank = len(sympy_shape)
if pads is not None:
assert len(pads) == 2 * rank
new_sympy_shape = [
d + pad_up + pad_down
for d, pad_up, pad_down in zip(sympy_shape, pads[:rank],
pads[rank:])
]
self._update_computed_dims(new_sympy_shape)
else:
# dynamic pads, create new symbolic dimensions
new_sympy_shape = self._new_symbolic_shape(rank, node)
output_tp = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi.CopyFrom(
helper.make_tensor_value_info(node.output[
0], output_tp, get_shape_from_sympy_shape(new_sympy_shape)))
def _infer_Pool(self, node):
sympy_shape = self._compute_conv_pool_shape(node)
self._update_computed_dims(sympy_shape)
for o in node.output:
if not o:
continue
vi = self.known_vi_[o]
vi.CopyFrom(
helper.make_tensor_value_info(o, vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(
sympy_shape)))
def _infer_Range(self, node):
vi = self.known_vi_[node.output[0]]
input_data = self._get_int_values(node)
if all([i is not None for i in input_data]):
start = as_scalar(input_data[0])
limit = as_scalar(input_data[1])
delta = as_scalar(input_data[2])
new_sympy_shape = [
sympy.Max(sympy.ceiling((limit - start) / delta), 0)
]
else:
new_dim = self._new_symbolic_dim_from_output(node)
new_sympy_shape = [self.symbolic_dims_[new_dim]]
self._update_computed_dims(new_sympy_shape)
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0], self.known_vi_[node.input[0]].type.tensor_type.
elem_type, get_shape_from_sympy_shape(new_sympy_shape)))
def _infer_ReduceProd(self, node):
axes = get_attribute(node, 'axes')
keep_dims = get_attribute(node, 'keepdims')
if keep_dims == 0 and axes == [0]:
data = self._get_int_values(node)[0]
if data is not None:
self.sympy_data_[node.output[0]] = sympy_reduce_product(data)
def _infer_Reshape(self, node):
shape_value = self._try_get_value(node, 1)
vi = self.known_vi_[node.output[0]]
if shape_value is None:
shape_shape = self._get_shape(node, 1)
assert len(shape_shape) == 1
shape_rank = shape_shape[0]
assert is_literal(shape_rank)
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0], vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(
self._new_symbolic_shape(shape_rank, node))))
else:
input_shape = self._get_shape(node, 0)
input_sympy_shape = self._get_sympy_shape(node, 0)
total = int(1)
for d in input_sympy_shape:
total = total * d
new_sympy_shape = []
deferred_dim_idx = -1
non_deferred_size = int(1)
for i, d in enumerate(shape_value):
if type(d) == sympy.Symbol:
new_sympy_shape.append(d)
elif d == 0:
new_sympy_shape.append(input_sympy_shape[i])
non_deferred_size = non_deferred_size * input_sympy_shape[i]
else:
new_sympy_shape.append(d)
if d == -1:
deferred_dim_idx = i
elif d != 0:
non_deferred_size = non_deferred_size * d
assert new_sympy_shape.count(-1) < 2
if -1 in new_sympy_shape:
new_dim = total // non_deferred_size
new_sympy_shape[deferred_dim_idx] = new_dim
self._update_computed_dims(new_sympy_shape)
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0], vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(new_sympy_shape)))
self._pass_on_sympy_data(node)
def _infer_Resize(self, node):
vi = self.known_vi_[node.output[0]]
input_sympy_shape = self._get_sympy_shape(node, 0)
if get_opset(self.out_mp_) <= 10:
scales = self._try_get_value(node, 1)
if scales is not None:
new_sympy_shape = [
sympy.simplify(sympy.floor(d * s))
for d, s in zip(input_sympy_shape, scales)
]
self._update_computed_dims(new_sympy_shape)
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0], self.known_vi_[node.input[
0]].type.tensor_type.elem_type,
get_shape_from_sympy_shape(new_sympy_shape)))
else:
roi = self._try_get_value(node, 1)
scales = self._try_get_value(node, 2)
sizes = self._try_get_value(node, 3)
if sizes is not None:
new_sympy_shape = [
sympy.simplify(sympy.floor(s)) for s in sizes
]
self._update_computed_dims(new_sympy_shape)
elif roi is not None and scales is not None:
rank = len(scales)
assert len(roi) == 2 * rank
roi_start = list(roi)[:rank]
roi_end = list(roi)[rank:]
scales = list(scales)
new_sympy_shape = [
sympy.simplify(sympy.floor(d * (end - start) * scale))
for d, start, end, scale in zip(input_sympy_shape,
roi_start, roi_end, scales)
]
self._update_computed_dims(new_sympy_shape)
else:
new_sympy_shape = self._new_symbolic_shape(
self._get_shape_rank(node, 0), node)
vi.CopyFrom(
helper.make_tensor_value_info(node.output[0], self.known_vi_[
node.input[0]].type.tensor_type.elem_type,
get_shape_from_sympy_shape(
new_sympy_shape)))
def _infer_Scan(self, node):
subgraph = get_attribute(node, 'body')
num_scan_inputs = get_attribute(node, 'num_scan_inputs')
scan_input_axes = get_attribute(node, 'scan_input_axes',
[0] * num_scan_inputs)
num_scan_states = len(node.input) - num_scan_inputs
scan_input_axes = [
handle_negative_axis(
ax, self._get_shape_rank(node, i + num_scan_states))
for i, ax in enumerate(scan_input_axes)
]
# We may have cases where the subgraph has optionial inputs that appear in both subgraph's input and initializer,
# but not in the node's input. In such cases, the input model might be invalid, but let's skip those optional inputs.
assert len(subgraph.input) >= len(node.input)
subgraph_inputs = subgraph.input[:len(node.input)]
for i, si in enumerate(subgraph_inputs):
subgraph_name = si.name
si.CopyFrom(self.known_vi_[node.input[i]])
if i >= num_scan_states:
scan_input_dim = si.type.tensor_type.shape.dim
scan_input_dim.remove(scan_input_dim[scan_input_axes[
i - num_scan_states]])
si.name = subgraph_name
self._onnx_infer_subgraph(node, subgraph)
num_scan_outputs = len(node.output) - num_scan_states
scan_output_axes = get_attribute(node, 'scan_output_axes',
[0] * num_scan_outputs)
scan_input_dim = get_shape_from_type_proto(self.known_vi_[node.input[
-1]].type)[scan_input_axes[-1]]
for i, o in enumerate(node.output):
vi = self.known_vi_[o]
if i >= num_scan_states:
shape = get_shape_from_type_proto(subgraph.output[i].type)
new_dim = handle_negative_axis(
scan_output_axes[i - num_scan_states], len(shape) + 1)
shape = shape[:new_dim] + [scan_input_dim] + shape[new_dim:]
vi.CopyFrom(
helper.make_tensor_value_info(o, subgraph.output[
i].type.tensor_type.elem_type, shape))
else:
vi.CopyFrom(subgraph.output[i])
vi.name = o
def _infer_ScatterElements(self, node):
data_shape = self._get_shape(node, 0)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[0], self.known_vi_[
node.input[0]].type.tensor_type.elem_type, data_shape))
def _infer_Shape(self, node):
self.sympy_data_[node.output[0]] = self._get_sympy_shape(node, 0)
def _infer_Size(self, node):
sympy_shape = self._get_sympy_shape(node, 0)
self.sympy_data_[node.output[0]] = sympy_reduce_product(sympy_shape)
self.known_vi_[node.output[0]].CopyFrom(
helper.make_tensor_value_info(node.output[0],
onnx.TensorProto.INT64, []))
def _infer_Slice(self, node):
if get_opset(self.out_mp_) <= 9:
axes = get_attribute(node, 'axes')
starts = get_attribute(node, 'starts')
ends = get_attribute(node, 'ends')
steps = [1] * len(axes)
else:
starts = as_list(self._try_get_value(node, 1), keep_none=True)
ends = as_list(self._try_get_value(node, 2), keep_none=True)
axes = self._try_get_value(node, 3)
steps = self._try_get_value(node, 4)
if axes is None and not (starts is None and ends is None):
axes = list(
range(0, len(starts if starts is not None else ends)))
if steps is None and not (starts is None and ends is None):
steps = [1] * len(starts if starts is not None else ends)
axes = as_list(axes, keep_none=True)
steps = as_list(steps, keep_none=True)
new_sympy_shape = self._get_sympy_shape(node, 0)
if starts is None or ends is None:
if axes is None:
for i in range(len(new_sympy_shape)):
new_sympy_shape[i] = self._new_symbolic_dim_from_output(
node, 0, i)
else:
new_sympy_shape = get_shape_from_sympy_shape(new_sympy_shape)
for i in axes:
new_sympy_shape[i] = self._new_symbolic_dim_from_output(
node, 0, i)
else:
for i, s, e, t in zip(axes, starts, ends, steps):
idx = handle_negative_axis(i, len(new_sympy_shape))
if is_literal(e):
if e >= self.int_max_:
e = new_sympy_shape[i]
elif e <= -self.int_max_:
e = 0 if s > 0 else -1
elif is_literal(new_sympy_shape[i]):
if e < 0:
e = e + new_sympy_shape[i]
e = min(e, new_sympy_shape[i])
else:
if e > 0:
e = sympy.Min(
e, new_sympy_shape[i]
) if e > 1 else e #special case for slicing first to make computation easier
else:
e = new_sympy_shape[i] + e
else:
if is_literal(new_sympy_shape[i]):
e = sympy.Min(e, new_sympy_shape[i])
else:
try:
if e >= new_sympy_shape[i]:
e = new_sympy_shape[i]
except Exception:
print(
'Unable to determine if {} <= {}, treat as equal'
.format(e, new_sympy_shape[i]))
e = new_sympy_shape[i]
if is_literal(s) and int(s) < 0:
s = new_sympy_shape[i] + s
new_sympy_shape[idx] = (e - s + t + (-1 if t > 0 else 1)) // t
self._update_computed_dims(new_sympy_shape)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0], vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(new_sympy_shape)))
# handle sympy_data if needed, for slice in shape computation
if node.input[0] in self.sympy_data_:
assert [0] == axes
assert len(starts) == 1
assert len(ends) == 1
self.sympy_data_[node.output[0]] = self.sympy_data_[node.input[0]][
starts[0]:ends[0]]
def _infer_Split(self, node):
input_sympy_shape = self._get_sympy_shape(node, 0)
axis = handle_negative_axis(
get_attribute(node, 'axis', 0), len(input_sympy_shape))
split = get_attribute(node, 'split')
if not split:
num_outputs = len(node.output)
split = [input_sympy_shape[axis] /
sympy.Integer(num_outputs)] * num_outputs
self._update_computed_dims(split)
else:
split = [sympy.Integer(s) for s in split]
for i_o in range(len(split)):
vi = self.known_vi_[node.output[i_o]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[i_o], self.known_vi_[node.input[
0]].type.tensor_type.elem_type,
get_shape_from_sympy_shape(input_sympy_shape[:axis] + [
split[i_o]
] + input_sympy_shape[axis + 1:])))
self.known_vi_[vi.name] = vi
def _infer_Squeeze(self, node):
self._pass_on_sympy_data(node)
def _infer_Tile(self, node):
repeats_value = self._get_value(node, 1)
input_sympy_shape = self._get_sympy_shape(node, 0)
new_sympy_shape = []
for i, d in enumerate(input_sympy_shape):
new_dim = d * repeats_value[i]
new_sympy_shape.append(new_dim)
self._update_computed_dims(new_sympy_shape)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0], vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(new_sympy_shape)))
def _infer_TopK(self, node):
rank = self._get_shape_rank(node, 0)
axis = handle_negative_axis(get_attribute(node, 'axis', -1), rank)
new_shape = self._get_shape(node, 0)
if get_opset(self.out_mp_) <= 9:
k = get_attribute(node, 'k')
else:
k = self._get_int_values(node)[1]
if k == None:
k = self._new_symbolic_dim_from_output(node)
else:
k = as_scalar(k)
if type(k) in [int, str]:
new_shape[axis] = k
else:
new_sympy_shape = self._get_sympy_shape(node, 0)
new_sympy_shape[axis] = k
self._update_computed_dims(
new_sympy_shape
) # note that TopK dim could be computed in sympy_data, so need to update computed_dims when it enters shape
new_shape = get_shape_from_sympy_shape(new_sympy_shape)
for i_o in range(len(node.output)):
vi = self.known_vi_[node.output[i_o]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[
i_o], vi.type.tensor_type.elem_type, new_shape))
def _infer_Unsqueeze(self, node):
self._pass_on_sympy_data(node)
def _infer_ZipMap(self, node):
map_key_type = None
if get_attribute(node, 'classlabels_int64s') is not None:
map_key_type = onnx.TensorProto.INT64
elif get_attribute(node, 'classlabels_strings') is not None:
map_key_type = onnx.TensorProto.STRING
assert map_key_type is not None
new_vi = onnx.ValueInfoProto()
new_vi.name = node.output[0]
new_vi.type.sequence_type.elem_type.map_type.value_type.tensor_type.elem_type = onnx.TensorProto.FLOAT
new_vi.type.sequence_type.elem_type.map_type.key_type = map_key_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(new_vi)
def _infer_impl(self, in_mp, start_sympy_data={}):
self.sympy_data_ = start_sympy_data
self.out_mp_.graph.ClearField('value_info')
self._apply_suggested_merge(graph_input_only=True)
self.input_symbols_ = set()
for i in self.out_mp_.graph.input:
input_dims = i.type.tensor_type.shape.dim
for i_dim in range(len(input_dims)):
if get_dim_from_type_proto(input_dims[i_dim]) is None:
# some models use None for symbolic dim in input, replace it with a string
input_dims[i_dim].dim_param = self._new_symbolic_dim(i.name,
i_dim)
self.input_symbols_.update([
d for d in get_shape_from_type_proto(i.type) if type(d) == str
])
for s in self.input_symbols_:
if s in self.suggested_merge_:
s_merge = self.suggested_merge_[s]
assert s_merge in self.symbolic_dims_
self.symbolic_dims_[s] = self.symbolic_dims_[s_merge]
else:
self.symbolic_dims_[s] = sympy.Symbol(s, integer=True)
# create a temporary ModelProto for single node inference
# note that we remove initializer to have faster inference
# for tensor ops like Reshape/Tile/Expand that read initializer, we need to do sympy computation based inference anyways
self.tmp_mp_ = onnx.ModelProto()
self.tmp_mp_.CopyFrom(self.out_mp_)
self.tmp_mp_.graph.ClearField('initializer')
for node in self.out_mp_.graph.node:
assert all([i in self.known_vi_ for i in node.input if i])
self._onnx_infer_single_node(node)
if node.op_type in self.dispatcher_:
self.dispatcher_[node.op_type](node)
if self.verbose_ > 2:
print(node.op_type + ': ' + node.name)
for i, name in enumerate(node.input):
print(' Input {}: {} {}€5€5€5€5€5'.format(
i, name, 'initializer'
if name in self.initializers_ else ''))
# onnx automatically merge dims with value, i.e. Mul(['aaa', 'bbb'], [1000, 1]) -> [1000, 'bbb']
# symbolic shape inference needs to apply merge of 'aaa' -> 1000 in this case
if node.op_type in [
'Add', 'Sub', 'Mul', 'Div', 'MatMul', 'MatMulInteger',
'MatMulInteger16', 'Where', 'Sum'
]:
vi = self.known_vi_[node.output[0]]
out_rank = len(get_shape_from_type_proto(vi.type))
in_shapes = [
self._get_shape(node, i) for i in range(len(node.input))
]
for d in range(out_rank - (2 if node.op_type in [
'MatMul', 'MatMulInteger', 'MatMulInteger16'
] else 0)):
in_dims = [
s[len(s) - out_rank + d] for s in in_shapes
if len(s) + d >= out_rank
]
if len(in_dims) > 1:
self._check_merged_dims(in_dims, allow_broadcast=True)
for i_o in range(len(node.output)):
vi = self.known_vi_[node.output[i_o]]
out_type = vi.type
out_type_kind = out_type.WhichOneof('value')
# only TensorProto and SparseTensorProto have shape
if out_type_kind != 'tensor_type' and out_type_kind != 'sparse_tensor_type':
continue
out_shape = get_shape_from_type_proto(vi.type)
out_type_undefined = out_type.tensor_type.elem_type == onnx.TensorProto.UNDEFINED
if self.verbose_ > 2:
print(' {}: {} {}'.format(node.output[
i_o], str(out_shape), vi.type.tensor_type.elem_type))
if node.output[i_o] in self.sympy_data_:
print(' Sympy Data: ' + str(self.sympy_data_[
node.output[i_o]]))
if None in out_shape or out_type_undefined:
if self.auto_merge_:
if node.op_type in [
'Add', 'Sub', 'Mul', 'Div', 'MatMul',
'MatMulInteger', 'MatMulInteger16', 'Concat',
'Where', 'Sum'
]:
shapes = [
self._get_shape(node, i)
for i in range(len(node.input))
]
if node.op_type in [
'MatMul', 'MatMulInteger', 'MatMulInteger16'
]:
# only support auto merge for MatMul for dim < rank-2 when rank > 2
assert len(shapes[0]) > 2 and dim_idx[0] < len(
shapes[0]) - 2
assert len(shapes[1]) > 2 and dim_idx[1] < len(
shapes[1]) - 2
elif node.op_type == 'Expand':
# auto merge for cases like Expand([min(batch, 1), min(seq, 512)], [batch, seq])
shapes = [
self._get_shape(node, 0),
self._get_value(node, 1)
]
else:
shapes = []
if shapes:
for idx in range(len(out_shape)):
if out_shape[idx] is not None:
continue
dim_idx = [
len(s) - len(out_shape) + idx
for s in shapes
]
assert all([d >= 0 for d in dim_idx])
self._add_suggested_merge([
s[i] if is_literal(s[i]) else str(s[i])
for s, i in zip(shapes, dim_idx)
])
self.run_ = True
else:
self.run_ = False
else:
self.run_ = False
# create new dynamic dims for ops not handled by symbolic shape inference
if self.run_ == False and not node.op_type in self.dispatcher_:
is_unknown_op = (out_type_undefined and
len(out_shape) == 0)
if is_unknown_op:
# unknown op to ONNX, maybe from higher opset or other domain
# only guess the output rank from input 0 when using guess_output_rank option
out_rank = self._get_shape_rank(
node, 0) if self.guess_output_rank_ else -1
else:
# valid ONNX op, but not handled by symbolic shape inference, just assign dynamic shape
out_rank = len(out_shape)
if out_rank >= 0:
new_shape = self._new_symbolic_shape(out_rank, node,
i_o)
vi.CopyFrom(
helper.make_tensor_value_info(
vi.name, self.known_vi_[node.input[
0]].type.tensor_type.elem_type,
get_shape_from_sympy_shape(new_shape)))
if self.verbose_ > 0:
if is_unknown_op:
print(
"Possible unknown op: {} node: {}, guessing {} shape"
.format(node.op_type, node.name,
vi.name))
if self.verbose_ > 2:
print(' {}: {} {}'.format(
node.output[i_o],
str(new_shape),
vi.type.tensor_type.elem_type))
self.run_ = True
continue # continue the inference after guess, no need to stop as no merge is needed
if self.verbose_ > 0 or not self.auto_merge_ or out_type_undefined:
print('Stopping at incomplete shape inference at ' +
node.op_type + ': ' + node.name)
print('node inputs:')
for i in node.input:
print(self.known_vi_[i])
print('node outputs:')
for o in node.output:
print(self.known_vi_[o])
if self.auto_merge_ and not out_type_undefined:
print('Merging: ' + str(self.suggested_merge_))
return False
self.run_ = False
return True
def _update_output_from_vi(self):
for output in self.out_mp_.graph.output:
if output.name in self.known_vi_:
tmp_output = self.known_vi_[output.name]
output.CopyFrom(tmp_output)
@staticmethod
def infer_shapes(in_mp,
int_max=2**31 - 1,
fixed_input_shape=None,
auto_merge=True,
guess_output_rank=False,
verbose=0):
if get_opset(in_mp) < 7:
print('Only support shape inferencing models of opset 7 and above.')
return
symbolic_shape_inference = SymbolicShapeInference(
int_max, auto_merge, guess_output_rank, verbose)
all_shapes_inferred = False
symbolic_shape_inference._preprocess(
in_mp, input_shapes=fixed_input_shape)
try:
while symbolic_shape_inference.run_:
all_shapes_inferred = symbolic_shape_inference._infer_impl(
in_mp)
symbolic_shape_inference._update_output_from_vi()
if not all_shapes_inferred:
print('!' * 10)
symbolic_shape_inference.out_mp_ = shape_inference.infer_shapes(
symbolic_shape_inference.out_mp_)
#onnx.save(symbolic_shape_inference.out_mp_, 'tmp.onnx')
except:
print('Stopping at incomplete shape inference')
symbolic_shape_inference.out_mp_ = shape_inference.infer_shapes(
symbolic_shape_inference.out_mp_)
return symbolic_shape_inference.out_mp_.graph
......@@ -48,7 +48,7 @@ class TFGraphNode(GraphNode):
@property
def out_shapes(self):
if self.layer_type == "OneShotIterator":
if self.layer_type == "OneShotIterator" or self.layer_type == "IteratorV2":
values = self.layer.attr["output_shapes"].list.shape
else:
values = self.layer.attr["_output_shapes"].list.shape
......@@ -68,7 +68,8 @@ class TFGraphNode(GraphNode):
if dtype == 0:
dtype = self.layer.attr['output_types'].list.type[0]
if dtype not in self.dtype_map:
raise Exception("Dtype[{}] not in dtype_map".format(dtype))
raise Exception("Dtype[{}] of node({}) not in dtype_map".format(
dtype, self.layer.name))
return self.dtype_map[dtype]
@property
......@@ -88,6 +89,16 @@ class TFGraphNode(GraphNode):
field = getattr(attr, attr.WhichOneof('value'))
return tensor_util.MakeNdarray(field)
@property
def name(self):
multi_out_ops = ['Split', 'SplitV', 'IteratorV2']
if self.layer_type in multi_out_ops:
if self.layer_name.count(':') > 0:
return self.layer_name.replace(':', '_p')
else:
return "{}_p0".format(self.layer_name)
return self.layer_name
def get_attr(self, name):
if name not in self.layer.attr:
return None
......@@ -114,16 +125,20 @@ class TFGraph(Graph):
def __init__(self, model, data_format="NHWC"):
super(TFGraph, self).__init__(model)
self.identity_map = dict()
self.multi_out_ops = ['Split', 'SplitV']
self.multi_out_ops = ['Split', 'SplitV', 'IteratorV2']
self.tf_data_format = data_format
def build(self):
for layer in self.model.node:
if layer.op == 'Assert':
continue
self.node_map[layer.name.replace('/', '_').replace(
'-', '_')] = TFGraphNode(
layer, data_format=self.tf_data_format)
for layer_name, node in self.node_map.items():
if node.layer_type == 'Const':
continue
for in_node in node.layer.input:
in_node = in_node.replace('/', '_').replace('-', '_').replace(
'^', '')
......@@ -139,6 +154,14 @@ class TFGraph(Graph):
super(TFGraph, self).build()
for layer in self.model.node:
if layer.op == 'Assert':
for ipt in layer.input:
ipt_name = ipt.replace('-', '_').replace('/', '_')
if ipt_name in self.output_nodes:
idx = self.output_nodes.index(ipt_name)
del self.output_nodes[idx]
# tensorflow graph optimize
self._remove_isolated_node()
self._optimize_dialiation_conv()
......@@ -272,7 +295,6 @@ class TFGraph(Graph):
def data_format_propagation(self, node):
current_node = self.node_map[node.layer_name]
current_node = node.tf_data_format
outputs = current_node.outputs
if len(outputs) == 0:
return
......@@ -322,7 +344,7 @@ class TFDecoder(object):
graph_def = cp.deepcopy(graph_def)
input_map = dict()
for layer in graph_def.node:
if layer.op != "Placeholder" and layer.op != "OneShotIterator":
if layer.op != "Placeholder" and layer.op != "OneShotIterator" and layer.op != "IteratorV2":
continue
graph_node = TFGraphNode(layer)
dtype = graph_node.layer.attr['dtype'].type
......@@ -403,7 +425,7 @@ class TFDecoder(object):
else:
value = graph_node.layer.attr["shape"].shape
shape = [dim.size for dim in value.dim]
self.input_info[graph_node.layer_name] = (shape, dtype)
self.input_info[layer.name] = (shape, dtype)
return input_map
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.op_mapper.onnx2paddle.opset9 import OpSet9, custom_layers
from x2paddle.core.op_mapper import OpMapper
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
class ONNXOpMapper(OpMapper):
def __init__(self, decoder):
super(ONNXOpMapper, self).__init__()
self.support_op_sets = [9, ]
self.default_op_set = 9
self.graph = decoder.graph
self.opset = self.create_opset(decoder)
if not self.op_checker():
raise Exception("Model are not supported yet.")
#mapping op
print("Total nodes: {}".format(
sum([
isinstance(node, ONNXGraphNode)
for name, node in self.graph.node_map.items()
])))
print("Nodes converting ...")
for node_name in self.graph.topo_sort:
node = self.graph.get_node(node_name)
op = node.layer_type
if hasattr(self.opset, op):
func = getattr(self.opset, op)
func(node)
elif op in self.opset.default_op_mapping:
self.opset.directly_map(node)
elif op in custom_layers:
self.opset.deal_custom_layer(node)
elif op in self.opset.elementwise_ops:
self.opset.elementwise_map(node)
print("Nodes converted.")
self.weights = self.opset.weights
self.omit_nodes = self.opset.omit_nodes
self.used_custom_layers = self.opset.used_custom_layers
def op_checker(self):
unsupported_ops = set()
for node_name in self.graph.topo_sort:
node = self.graph.get_node(node_name)
op = node.layer_type
if not hasattr(self.opset, op) and \
op not in self.opset.default_op_mapping and \
op not in custom_layers and \
op not in self.opset.elementwise_ops:
unsupported_ops.add(op)
if len(unsupported_ops) == 0:
return True
else:
print("There are {} ops not supported yet, list as below".format(
len(unsupported_ops)))
for op in unsupported_ops:
print(op)
return False
def create_opset(self, decoder):
run_op_set = self.default_op_set
opset = ''
if decoder.op_set in self.support_op_sets:
opset = 'OpSet' + str(decoder.op_set)
elif decoder.op_set < self.default_op_set:
opset = 'OpSet' + str(self.default_op_set)
else:
for op_set in self.support_op_sets:
if decoder.op_set > op_set:
run_op_set = op_set
else:
break
opset = 'OpSet' + str(run_op_set)
print(
'Now, onnx2paddle support convert onnx model opset_verison {},'
'opset_verison of your onnx model is {}, automatically treated as op_set: {}.'
.format(self.support_op_sets, decoder.op_set, run_op_set))
return eval(opset)(decoder)
from .opset import OpSet9
from .custom_layer import custom_layers
......@@ -13,10 +13,6 @@
# limitations under the License.
from .register import get_registered_layers
#custom layer import begins
from . import InstanceNormalization
#custom layer import ends
custom_layers = get_registered_layers()
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
......@@ -12,27 +12,23 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.core.graph import GraphNode
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping_field_values
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping
from x2paddle.op_mapper.onnx_directly_map import default_ioa_constraint
from x2paddle.op_mapper.onnx_custom_layer import *
from x2paddle.core.util import string
from x2paddle.op_mapper.onnx2paddle.opset9.custom_layer import *
from functools import reduce
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
import logging as _logging
from collections import OrderedDict as _dict
from collections import OrderedDict
import math
import os
import shutil
from functools import reduce
import onnxruntime as rt
_logger = _logging.getLogger(__name__)
......@@ -52,7 +48,24 @@ def get_same_padding(in_size, kernel_size, stride):
return [pad0, pad1]
class ONNXOpMapper(OpMapper):
def print_mapping_info(func):
def run_mapping(*args, **kwargs):
node = args[1]
try:
res = func(*args, **kwargs)
except:
print("convert failed node:{}, op_type is {}".format(
node.layer_name[9:], node.layer_type))
raise
else:
#print("convert successfully node:{}, op_type is {}".format(
# node.layer_name[9:], node.layer_type))
return res
return run_mapping
class OpSet9():
elementwise_ops = {
'Add': 'elementwise_add',
'Div': 'elementwise_div',
......@@ -61,154 +74,87 @@ class ONNXOpMapper(OpMapper):
'Pow': 'elementwise_pow',
}
def __init__(self, decoder, save_dir):
super(ONNXOpMapper, self).__init__()
self.decoder = decoder
self.graph = decoder.onnx_graph
default_op_mapping_field_values = OrderedDict()
default_op_mapping_field_values['FLUID_OP'] = ''
default_op_mapping_field_values['FLUID_INPUT_ARGS'] = None
default_op_mapping_field_values['FLUID_OUTPUT_ARGS'] = None
default_op_mapping_field_values['ATTR_MAPPING'] = dict()
default_op_mapping_field_values['DEFAULTS'] = dict()
default_op_mapping_field_values['INPUT_PERM'] = None
default_op_mapping_field_values['OUTPUT_PERM'] = None
default_op_mapping_field_values['FILL_NAME_FIELD'] = True
default_op_mapping = {
'Shape': ['shape', ['X'], ['Out']],
'Clip': [
'clip', ['X'], ['Out'], dict(), dict(
min=(np.asarray(
[255, 255, 127, 255], dtype=np.uint8).view(np.float32)[0]),
max=(np.asarray(
[255, 255, 127, 127], dtype=np.uint8).view(np.float32)[0]),
)
],
'Erf': ['erf', ['X'], ['Out']],
'Ceil': ['ceil', ['X'], ['Out']],
'ReduceMean': [
'reduce_mean', ['X'], ['Out'], dict(
axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
],
'ReduceSum': [
'reduce_sum', ['X'], ['Out'], dict(
axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
],
'ReduceMin': [
'reduce_min', ['X'], ['Out'], dict(
axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
],
'ReduceMax': [
'reduce_max', ['X'], ['Out'], dict(
axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
],
#active function
'Relu': ['relu', ['X'], ['Out']],
'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)],
'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)],
'ThresholdedRelu': [
'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'),
dict(alpha=1.)
],
'Tanh': ['tanh', ['X'], ['Out']],
'Sigmoid': ['sigmoid', ['X'], ['Out']],
'HardSigmoid': [
'hard_sigmoid', ['X'], ['Out'], dict(
alpha='slope', beta='offset'), dict(
slope=.2, offset=.5)
],
'Softsign': ['softsign', ['X'], ['Out']],
'Softplus': ['softplus', ['X'], ['Out']],
'Exp': ['exp', ['X'], ['Out']],
'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)],
'Sqrt': ['sqrt', ['X'], ['Out']],
'Floor': ['floor', ['X'], ['Out']],
'Abs': ['abs', ['X'], ['Out']],
}
default_ioa_constraint = {}
def __init__(self, decoder):
super(OpSet9, self).__init__()
self.graph = decoder.graph
self.input_shapes = []
self.weights = dict()
self.omit_nodes = list()
self.used_custom_layers = dict()
self.is_inference = False
self.tmp_data_dir = os.path.join(save_dir, 'tmp_data')
self.tmp_outputs_dict = {}
self.get_output_shapes()
if not self.op_checker():
raise Exception("Model are not supported yet.")
#mapping op
print("Total nodes: {}".format(
sum([
isinstance(node, ONNXGraphNode)
for name, node in self.graph.node_map.items()
])))
for node_name in self.graph.topo_sort:
node = self.graph.get_node(node_name)
op = node.layer_type
if hasattr(self, op):
func = getattr(self, op)
func(node)
elif op in default_op_mapping:
self.directly_map(node)
elif op in custom_layers:
self.deal_custom_layer(node)
elif op in self.elementwise_ops:
self.elementwise_map(node)
self.remove_tmp_data()
def op_checker(self):
unsupported_ops = set()
for node_name in self.graph.topo_sort:
node = self.graph.get_node(node_name)
op = node.layer_type
if not hasattr(self, op) and \
op not in default_op_mapping and \
op not in custom_layers and \
op not in self.elementwise_ops:
unsupported_ops.add(op)
if len(unsupported_ops) == 0:
return True
else:
print("There are {} ops not supported yet, list as below".format(
len(unsupported_ops)))
for op in unsupported_ops:
print(op)
return False
def get_results_of_inference(self, model, value_infos, data_nodes):
if not os.path.exists(self.tmp_data_dir):
os.makedirs(self.tmp_data_dir)
inputs_dict = {}
for data_node in data_nodes:
value_info = value_infos[data_node]
shape = value_info['shape']
for i, dim_shape in enumerate(shape):
if dim_shape == 0 and i == 0:
shape[i] = 1
if dim_shape == 0 and i != 0:
assert 'shape of input is not assigned'
ipt = np.random.random(shape).astype(value_info['dtype'])
inputs_dict[data_node] = ipt
model = onnx.shape_inference.infer_shapes(model)
outputs = []
for value_info in model.graph.value_info:
outputs.append(value_info.name)
model.graph.ClearField('output')
model.graph.output.MergeFrom(model.graph.value_info)
onnx.save(model,
os.path.join(self.tmp_data_dir, 'onnx_model_infer.onnx'))
sess = rt.InferenceSession(
os.path.join(self.tmp_data_dir, 'onnx_model_infer.onnx'))
res = sess.run(None, input_feed=inputs_dict)
self.tmp_outputs_dict = dict(zip(outputs, res))
return
def get_dynamic_shape(self, layer):
"""
get dynamic shape from infer_result
"""
if layer not in self.tmp_outputs_dict:
return [None, None, None]
output = self.tmp_outputs_dict[layer]
return output.tolist(), output.dtype, output.shape
def get_output_shapes(self):
"""
build topo_sort of ONNX model
"""
nodes = self.decoder.model.graph.node
node_map = self.decoder.onnx_graph.node_map
value_infos = self.decoder.onnx_graph.value_infos
onnx_model = self.decoder.model
for layer in nodes:
node = node_map[layer.name]
for opt in layer.output:
if opt in value_infos:
value_info = value_infos[opt]
if len(value_info['shape']) == 0 or value_info[
'dtype'] is None or 0 in value_info['shape']:
if self.is_inference == False:
self.get_results_of_inference(
onnx_model, value_infos,
self.decoder.onnx_graph.place_holder_nodes)
self.is_inference = True
_, dtype, shape = self.get_dynamic_shape(opt)
node.out_shapes.append(shape)
node.dtype = dtype
else:
node.dtype = value_info['dtype']
node.out_shapes.append(value_info['shape'])
else:
if self.is_inference == False:
self.get_results_of_inference(
onnx_model, value_infos,
self.decoder.onnx_graph.place_holder_nodes)
self.is_inference = True
_, dtype, shape = self.get_dynamic_shape(opt)
node.dtype = dtype
node.out_shapes.append(shape)
def remove_tmp_data(self):
"""
remove temporarily generated file
"""
if os.path.exists(self.tmp_data_dir):
import shutil
shutil.rmtree(self.tmp_data_dir)
@print_mapping_info
def directly_map(self, node, name='', *args, **kwargs):
inputs = node.layer.input
outputs = node.layer.output
op_type = node.layer_type
attrs = node.attr_map
info = default_op_mapping[op_type]
info.extend(list(default_op_mapping_field_values.values())[len(info):])
info = self.default_op_mapping[op_type]
info.extend(
list(self.default_op_mapping_field_values.values())[len(info):])
(
fluid_op,
fluid_input_args,
......@@ -219,8 +165,8 @@ class ONNXOpMapper(OpMapper):
output_perm,
fill_name_field, ) = info
if fluid_op in default_ioa_constraint:
for predicate, message in default_ioa_constraint[fluid_op]:
if fluid_op in self.default_ioa_constraint:
for predicate, message in self.default_ioa_constraint[fluid_op]:
assert predicate(inputs, outputs, attrs), message
mapped_attrs = {
......@@ -243,11 +189,18 @@ class ONNXOpMapper(OpMapper):
map(lambda i: outputs[i], output_perm))
attr = fluid_attrs
assert len(val_inps) == 1, 'directly_map error with multi inputs'
if fluid_op not in ['shape']:
if fluid_op not in ['shape', 'erf']:
attr['name'] = string(node.layer_name)
node.fluid_code.add_layer(
fluid_op, inputs=val_inps[0], output=val_outs[0], param_attr=attr)
if fluid_op in ['shape']:
node.fluid_code.add_layer(
'cast',
inputs=val_outs[0],
output=val_outs[0],
param_attr={'dtype': string('int64')})
@print_mapping_info
def deal_custom_layer(self, node):
op = node.layer_type
custom_code, func = make_custom_layer(node)
......@@ -268,6 +221,7 @@ class ONNXOpMapper(OpMapper):
self.used_custom_layers[op +
'_child_func'] = child_func_code
@print_mapping_info
def elementwise_map(self, node):
assert node.layer_type in self.elementwise_ops
op_type = self.elementwise_ops[node.layer_type]
......@@ -279,6 +233,7 @@ class ONNXOpMapper(OpMapper):
if len(val_x_shape) < len(val_y_shape):
val_x, val_y = val_y, val_x
val_y_shape, val_x_shape = val_x_shape, val_y_shape
str_y_shape = ','.join(str(e) for e in val_y_shape)
str_x_shape = ','.join(str(e) for e in val_x_shape)
......@@ -310,6 +265,7 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
op_type, inputs=inputs, output=node, param_attr=attr)
@print_mapping_info
def place_holder(self, node):
self.input_shapes.append(node.out_shapes[0])
......@@ -329,6 +285,7 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
"data", inputs=None, output=node, param_attr=attr)
@print_mapping_info
def create_parameter(self, node, parameter=None):
if parameter is not None:
node = parameter
......@@ -341,11 +298,24 @@ class ONNXOpMapper(OpMapper):
'dtype': string(dtype),
'shape': shape,
'name': string(node.layer_name),
'attr': string(node.layer_name),
'default_initializer': 'Constant(0.0)'
}
node.fluid_code.add_layer(
"create_parameter", inputs=None, output=node, param_attr=attr)
if dtype == 'bool':
attr['dtype'] = string('int64')
node.fluid_code.add_layer(
"create_parameter", inputs=None, output=node, param_attr=attr)
node.fluid_code.add_layer(
"cast",
inputs=node,
output=node,
param_attr={'dtype': string('bool')})
elif dtype == 'uint8':
attr['dtype'] = string('float32')
node.fluid_code.add_layer(
"create_parameter", inputs=None, output=node, param_attr=attr)
else:
node.fluid_code.add_layer(
"create_parameter", inputs=None, output=node, param_attr=attr)
def _pad_if_asymmetric(self, node, pads, val_name): # pads: SSEE
assert len(pads) & 1 == 0
......@@ -362,41 +332,13 @@ class ONNXOpMapper(OpMapper):
def _interpolate(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_scales = self.graph.get_input_node(node, idx=1, copy=True)
val_y = self.graph.get_node(node.layer.output[0], copy=True)
out_shape = val_y.out_shapes[0]
if out_shape is not None:
assert len(out_shape) == 4, 'only 4-D Tensor as X and Y supported'
out_shape = out_shape[2:]
scales = _const_weight_or_none(val_scales)
if node.layer_type == 'Resize':
val_scales = self.graph.get_input_node(node, idx=2, copy=True)
elif node.layer_type == 'Upsample':
val_scales = self.graph.get_input_node(node, idx=1, copy=True)
if isinstance(val_scales, ONNXGraphNode):
scales, _, _ = self.get_dynamic_shape(val_scales.layer_name)
attr = {'name': string(node.layer_name)}
use_scales = True
if scales is not None:
try:
assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
assert scales[0] == 1 and scales[
1] == 1, 'only scale on (NC)HW supported'
assert scales[2] == scales[
3], 'only aspect-ratio-invariant scale supported'
except:
use_scales = False
scale = scales[2] if scales else None
if scale is None:
assert out_shape, 'neither scales nor output shape is available'
else:
if out_shape is None:
in_shape = val_x.out_shapes[0]
assert in_shape is not None, 'out_shape required but not inferrable'
assert len(
in_shape) == 4, 'only 4-D Tensor as X and Y supported'
out_shape = [in_shape[2] * scale, in_shape[3] * scale]
mode = node.get_attr('mode', 'nearest')
fluid_op = 'resize_{}'.format(mode)
if 'linear' in mode:
print(
......@@ -404,14 +346,14 @@ class ONNXOpMapper(OpMapper):
)
fluid_op = 'resize_bilinear'
if use_scales and scale is not None:
attr['scale'] = scale
else:
attr['out_shape'] = out_shape
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
fluid_op,
inputs={'input': val_x,
'scale': val_scales},
output=node,
param_attr=attr)
@print_mapping_info
def RoiAlign(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_rois = self.graph.get_input_node(node, idx=1, copy=True)
......@@ -433,6 +375,7 @@ class ONNXOpMapper(OpMapper):
output=node,
param_attr=attr)
@print_mapping_info
def MaxRoiPool(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_rois = self.graph.get_input_node(node, idx=1, copy=True)
......@@ -451,6 +394,7 @@ class ONNXOpMapper(OpMapper):
output=node,
param_attr=attr)
@print_mapping_info
def Pad(self, node, op_independent=True):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
pads = node.get_attr('pads')
......@@ -497,17 +441,23 @@ class ONNXOpMapper(OpMapper):
param_attr=attr)
return node.layer_name + '_paded'
@print_mapping_info
def Unsqueeze(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = node.get_attr('axes')
attr = {'axes': axes, 'name': string(node.layer_name)}
if len(val_x.out_shapes[0]) == 0:
node.fluid_code.add_layer(
'assign', inputs=val_x, output=node, param_attr=None)
if node.layer_name:
node.fluid_code.add_layer(
'reshape',
inputs=val_x,
output=node,
param_attr={'shape': [1]})
else:
attr = {'axes': axes, 'name': string(node.layer_name)}
node.fluid_code.add_layer(
'unsqueeze', inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def Shrink(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
bias = node.get_attr('bias')
......@@ -527,6 +477,7 @@ class ONNXOpMapper(OpMapper):
output=node,
param_attr=None)
@print_mapping_info
def Constant(self, node):
val_output = self.graph.get_node(node.layer.output[0], copy=True)
......@@ -557,24 +508,42 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
'fill_constant', inputs=None, output=node, param_attr=attr)
else:
if dtype.name == 'uint8':
dtype = 'int64'
value = np.reshape(value, shape)
self.weights[node.layer_name] = value
attr = {
'dtype': string(dtype),
'shape': shape,
'name': string(node.layer_name),
'attr': string(node.layer_name),
'default_initializer': 'Constant(0.0)'
}
node.fluid_code.add_layer(
"create_parameter", inputs=None, output=node, param_attr=attr)
@print_mapping_info
def Resize(self, node):
self._interpolate(node)
@print_mapping_info
def Upsample(self, node):
self._interpolate(node)
@print_mapping_info
def InstanceNormalization(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_scale = self.graph.get_input_node(node, idx=1, copy=True)
val_b = self.graph.get_input_node(node, idx=2, copy=True)
epsilon = node.get_attr('epsilon', 1e-5)
attr = {
'epsilon': epsilon,
'param_attr': string(val_scale.layer_name),
'bias_attr': string(val_b.layer_name)
}
node.fluid_code.add_layer(
"instance_norm", inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def Expand(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_shape = self.graph.get_input_node(node, idx=1, copy=True)
......@@ -598,13 +567,14 @@ class ONNXOpMapper(OpMapper):
output=node.layer_name,
param_attr=attr)
@print_mapping_info
def Gather(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
indices = self.graph.get_input_node(node, idx=1, copy=True)
indices_shape = indices.out_shapes[0]
axis = node.get_attr('axis', 0)
assert len(
indices_shape) <= 2, "Gather op don't support dim of indice >2 "
#assert len(
# indices_shape) <= 2, "Gather op don't support dim of indice >2 "
if axis == 0 and len(indices_shape) <= 1:
node.fluid_code.add_layer(
'gather',
......@@ -630,13 +600,55 @@ class ONNXOpMapper(OpMapper):
param_attr=None)
node.fluid_code.add_layer(
'transpose', inputs=node, output=node, param_attr=attr_trans)
elif len(indices_shape) > 1:
elif axis == 0 and len(indices_shape) > 1:
if val_x.out_shapes[0] is not None and isinstance(
val_x, ONNXGraphDataNode):
node.fluid_code.add_layer(
'embedding',
inputs=indices,
output=node,
use_fluid=True,
param_attr={
'param_attr': string(val_x.layer_name),
'size': val_x.out_shapes[0]
})
else:
from functools import reduce
#indices_shape = [1,7]
reshape_shape = reduce(lambda x, y: x * y, indices_shape)
indices_reshape = indices.layer_name + '_shape'
node.fluid_code.add_layer(
'reshape',
inputs=indices,
output=indices_reshape,
param_attr={'shape': [reshape_shape, ]})
perm = list(range(len(val_x.out_shapes[0])))
node.fluid_code.add_layer(
'gather',
inputs={'input': val_x,
'index': indices_reshape},
output=node,
param_attr=None)
val_x_shape = val_x.out_shapes[0]
reshaped_shape = []
for i in perm:
reshaped_shape.append(indices_shape[i])
for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
reshaped_shape.append(i)
node.fluid_code.add_layer(
'reshape',
inputs=node,
output=node,
param_attr={'shape': reshaped_shape})
elif axis > 0 and len(indices_shape) > 1:
from functools import reduce
reshape_shape = reduce(lambda x, y: x * y, indices_shape)
indices_reshape = indices.layer_name + '_shape'
node.fluid_code.add_layer(
'reshape',
inputs=indices,
output=indices,
output=indices_reshape,
param_attr={'shape': [reshape_shape, ]})
perm = list(range(len(val_x.out_shapes[0])))
......@@ -651,7 +663,7 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
'gather',
inputs={'input': name_trans,
'index': indices},
'index': indices_reshape},
output=node,
param_attr=None)
node.fluid_code.add_layer(
......@@ -668,69 +680,102 @@ class ONNXOpMapper(OpMapper):
output=node,
param_attr={'shape': reshaped_shape})
@print_mapping_info
def Range(self, node):
val_start = self.graph.get_input_node(node, idx=0, copy=True)
val_limit = self.graph.get_input_node(node, idx=1, copy=True)
val_delta = self.graph.get_input_node(node, idx=2, copy=True)
dtype = val_start.dtype
inputs = {'start': val_start, 'end': val_limit, 'step': val_delta}
node.fluid_code.add_layer(
'range',
inputs=inputs,
output=node,
param_attr={'dtype': string(dtype)})
@print_mapping_info
def Slice(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
starts, ends, axes, steps = None, None, None, None
attr = {}
if len(node.inputs) > 1:
starts = self.graph.get_input_node(node, idx=1, copy=True)
ends = self.graph.get_input_node(node, idx=2, copy=True)
if len(node.inputs) > 3:
axes = self.graph.get_input_node(node, idx=3, copy=True)
self.omit_nodes.append(axes.layer_name)
axes = _const_weight_or_none(axes)
if len(node.inputs) > 4:
steps = self.graph.get_input_node(node, idx=4, copy=True)
self.omit_nodes.append(steps.layer_name)
steps = _const_weight_or_none(steps)
self.omit_nodes.append(starts.layer_name)
self.omit_nodes.append(ends.layer_name)
starts = _const_weight_or_none(starts).copy()
ends = _const_weight_or_none(ends).copy()
if steps is not None:
assert steps == 1, "Only support convert op:Slice, which attribute:steps == 1"
attr = {
"axes": axes,
"starts": starts.layer_name,
"ends": ends.layer_name
}
starts_value = _const_weight_or_none(starts)
ends_value = _const_weight_or_none(ends)
if starts_value is not None and ends_value is not None:
self.omit_nodes.append(starts.layer_name)
self.omit_nodes.append(ends.layer_name)
ends_value = ends_value.copy()
for idx in range(len(ends_value)):
if ends_value[idx] > 2**31 - 1:
ends_value[idx] = 2**31 - 1
attr = {
"axes": axes,
"starts": starts_value,
"ends": ends_value
}
else:
if starts.dtype != 'int32':
node.fluid_code.add_layer(
'cast',
inputs=starts,
output=starts,
param_attr={'dtype': string('int32')})
if ends.dtype != 'int32':
node.fluid_code.add_layer(
'cast',
inputs=ends,
output=ends,
param_attr={'dtype': string('int32')})
else:
starts = node.get_attr('starts')
ends = node.get_attr('ends')
axes = node.get_attr('axes')
for idx in range(len(ends)):
if ends[idx] > 2**31 - 1:
ends[idx] = 2**31 - 1
attr = {"axes": axes, "starts": starts, "ends": ends}
val_y = self.graph.get_node(node.layer.output[0], copy=True)
shape = val_x.out_shapes[0]
if shape is not None:
for idx, value in enumerate(starts):
if value > shape[axes[idx]]:
starts[idx] = shape[axes[idx]]
for idx, value in enumerate(ends):
if value > shape[axes[idx]]:
ends[idx] = shape[axes[idx]]
attr = {"axes": axes, "starts": starts, "ends": ends}
node.fluid_code.add_layer(
'slice', inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def ConstantOfShape(self, node):
val_shape = self.graph.get_input_node(node, idx=0, copy=True)
val_y = self.graph.get_node(node.layer.output[0], copy=True)
shape = _const_weight_or_none(val_shape)
if shape is None:
shape = node.out_shapes[0]
assert shape is not None, (
'given shape is neither const value nor deductible from output, '
'this is not supported')
value = node.get_attr('value')
dtype = value.dtype
value = value.tolist()
assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
'this is not supported')
if len(value) == 1:
shape = [1]
value = value[0]
if dtype.name == 'int64':
dtype = 'int32'
attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
attr = {
'shape': val_shape.layer_name,
'dtype': string(dtype),
'value': value
}
node.fluid_code.add_layer(
'fill_constant', inputs=None, output=node, param_attr=attr)
@print_mapping_info
def Split(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_y = self.graph.get_node(node.layer.output[0], copy=True)
......@@ -747,46 +792,53 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
'split', inputs=val_x, output=val_y, param_attr=attr)
@print_mapping_info
def Reshape(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_shape = self.graph.get_input_node(node, idx=1, copy=True)
val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
shape = None
if isinstance(val_shape, ONNXGraphDataNode):
self.omit_nodes.append(val_shape.layer_name)
attr = {'name': string(node.layer_name)}
# catch dynamic graph shape
if isinstance(val_shape, ONNXGraphNode):
shape, _, _ = self.get_dynamic_shape(val_shape.layer_name)
if val_shape.dtype == 'int64':
val_shape_cast = val_shape.layer_name + '_cast'
node.fluid_code.add_layer(
'cast',
inputs=val_shape,
output=val_shape_cast,
param_attr={'dtype': string('int32')})
attr['actual_shape'] = val_shape_cast
else:
attr['actual_shape'] = val_shape
if shape is None:
shape = val_reshaped.out_shapes[0]
attr = {}
shape_value = _const_weight_or_none(val_shape)
shape_dims = len(val_shape.out_shapes[0])
if shape is None:
shape = [1, -1]
_logger.warning(
'in %s(%s -> Reshape -> %s): '
'input "shape" not inferred, use [1, -1] as dummy value, '
'the behavior of Paddle fluid maybe undefined', node.layer_name,
val_x.layer_name, val_reshaped.layer_name)
attr['shape'] = shape
node.fluid_code.add_layer(
'reshape', inputs=val_x, output=node, param_attr=attr)
if shape_value is not None:
node.fluid_code.add_layer(
'reshape',
inputs={'x': val_x},
output=node,
param_attr={'shape': shape_value.tolist()})
elif val_shape.dtype == 'int64':
val_shape_cast = val_shape.layer_name + '_cast'
node.fluid_code.add_layer(
'cast',
inputs=val_shape,
output=val_shape_cast,
param_attr={'dtype': string('int32')})
node.fluid_code.add_layer(
'reshape',
inputs=val_shape_cast,
output=val_shape_cast,
param_attr={'shape': val_shape.out_shapes[0]})
node.fluid_code.add_layer(
'reshape',
inputs={'x': val_x,
'shape': val_shape_cast},
output=node,
param_attr=attr)
else:
node.fluid_code.add_layer(
'reshape',
inputs=val_shape,
output=val_shape,
param_attr={'shape': val_shape.out_shapes[0]})
node.fluid_code.add_layer(
'reshape',
inputs={'x': val_x,
'shape': val_shape},
output=node,
param_attr=attr)
@print_mapping_info
def Cast(self, node):
val_input = self.graph.get_input_node(node, idx=0, copy=True)
val_output = self.graph.get_node(node.layer.output[0], copy=True)
......@@ -802,6 +854,7 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
'cast', inputs=val_input, output=node, param_attr=attr)
@print_mapping_info
def AveragePool(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -838,6 +891,7 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def Concat(self, node):
inputs = []
for i in range(len(node.layer.input)):
......@@ -851,6 +905,7 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
'concat', inputs=inputs, output=node, param_attr=attr)
@print_mapping_info
def Flatten(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axis = node.get_attr('axis', 1)
......@@ -858,6 +913,7 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
'flatten', inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def Gemm(self, node):
val_a = self.graph.get_input_node(node, idx=0, copy=True)
val_b = self.graph.get_input_node(node, idx=1, copy=True)
......@@ -907,6 +963,7 @@ class ONNXOpMapper(OpMapper):
output=node,
param_attr=attr)
@print_mapping_info
def Sum(self, node):
val_inps = node.layer.input
inputs = {
......@@ -926,6 +983,7 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
"elementwise_add", inputs=inputs, output=node)
@print_mapping_info
def MatMul(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_y = self.graph.get_input_node(node, idx=1, copy=True)
......@@ -934,6 +992,7 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
"matmul", inputs=inputs, output=node, param_attr=attr)
@print_mapping_info
def BatchNormalization(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_scale = self.graph.get_input_node(node, idx=1, copy=True)
......@@ -966,6 +1025,7 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
"batch_norm", inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def Transpose(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
perm = node.get_attr('perm')
......@@ -973,12 +1033,14 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
"transpose", inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def Relu(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer(
"relu", inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def PRelu(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_slope = self.graph.get_input_node(node, idx=1, copy=True)
......@@ -996,13 +1058,22 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
"prelu", inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def Squeeze(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = node.get_attr('axes')
attr = {'axes': axes, "name": string(node.layer_name)}
node.fluid_code.add_layer(
"squeeze", inputs=val_x, output=node, param_attr=attr)
if len(val_x.out_shapes[0]) == 1:
node.fluid_code.add_layer(
"cast",
inputs=val_x,
output=node,
param_attr={'dtype': string(val_x.dtype)})
else:
node.fluid_code.add_layer(
"squeeze", inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def Equal(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_y = self.graph.get_input_node(node, idx=1, copy=True)
......@@ -1013,6 +1084,18 @@ class ONNXOpMapper(OpMapper):
output=node,
param_attr=None)
@print_mapping_info
def Greater(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_y = self.graph.get_input_node(node, idx=1, copy=True)
node.fluid_code.add_layer(
"greater_than",
inputs={'x': val_x,
'y': val_y},
output=node,
param_attr=None)
@print_mapping_info
def Where(self, node):
condition = self.graph.get_input_node(node, idx=0, copy=True)
val_x = self.graph.get_input_node(node, idx=1, copy=True)
......@@ -1059,45 +1142,42 @@ class ONNXOpMapper(OpMapper):
output=node,
param_attr=None)
@print_mapping_info
def NonZero(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
where_name = node.layer_name + '_where'
node.fluid_code.add_layer(
"where", inputs=val_x.layer_name + '!=0', output=where_name)
dims = len(val_x.out_shapes[0])
elements_count_val_x = reduce(lambda x, y: x * y, val_x.out_shapes[0])
flatten_names = []
for dim in range(dims):
slice_name = node.layer_name + '_slice' + str(dim)
flatten_name = node.layer_name + '_flatten' + str(dim)
flatten_names.append(flatten_name)
attr = {
'axes': list(range(dims)),
'starts': [0, dim],
'ends': [elements_count_val_x, dim + 1]
}
val_x_dim = len(val_x.out_shapes[0])
print(val_x.layer_name, val_x.out_shapes[0])
if val_x_dim == 1:
node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
node.fluid_code.add_layer(
"slice", inputs=where_name, output=slice_name, param_attr=attr)
"transpose",
inputs=val_x,
output=node,
param_attr={'perm': [1, 0]})
if val_x_dim > 1:
node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
node.fluid_code.add_layer(
"flatten",
inputs=slice_name,
output=flatten_name,
param_attr={'axis': 0})
node.fluid_code.add_layer(
"concat", inputs=flatten_names, output=node,
param_attr={'axis': 0})
"split",
inputs=val_x,
output=val_x,
param_attr={'num_or_sections': 1,
'dim': val_x_dim})
node.fluid_code.add_layer("concat", inputs=val_x, output=node)
@print_mapping_info
def Identity(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
node.fluid_code.add_layer("assign", inputs=val_x, output=node)
@print_mapping_info
def Tile(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
repeats = _const_weight_or_none(val_repeats)
assert repeats is not None, 'for OP:Tile, only const repeats supported'
if isinstance(repeats, int):
if repeats is None:
repeats = val_repeats.layer_name
elif isinstance(repeats, int):
repeats = [repeats]
attr = {
......@@ -1107,9 +1187,9 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
"expand", inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def MaxPool(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
auto_pad = node.get_attr('auto_pad', 'NOTSET')
assert node.get_attr(
"dilations") is None, 'only dilations = 0 is supported' # optional
......@@ -1148,16 +1228,7 @@ class ONNXOpMapper(OpMapper):
def _global_pool(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_y = self.graph.get_node(node.layer.output[0], copy=True)
input_shape = val_x.out_shapes[0]
output_shape = val_y.out_shapes[0]
assert input_shape is not None or output_shape is not None, 'poolnd not inferred' # N
if input_shape:
poolnd = len(input_shape) - 2 # NC...
elif output_shape:
poolnd = len(output_shape) - 2 # NC...
assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
fluid_op = 'pool{}d'.format(poolnd)
fluid_op = 'pool2d'
pool_type = None
if node.layer.op_type == 'GlobalMaxPool':
pool_type = 'max'
......@@ -1172,12 +1243,15 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def GlobalMaxPool(self, node):
self._global_pool(node)
@print_mapping_info
def GlobalAveragePool(self, node):
self._global_pool(node)
@print_mapping_info
def Conv(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_w = self.graph.get_input_node(node, idx=1, copy=True)
......@@ -1229,6 +1303,7 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def ConvTranspose(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_w = self.graph.get_input_node(node, idx=1, copy=True)
......@@ -1280,6 +1355,7 @@ class ONNXOpMapper(OpMapper):
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
@print_mapping_info
def GRU(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_w = self.graph.get_input_node(node, idx=1, copy=True)
......@@ -1303,8 +1379,6 @@ class ONNXOpMapper(OpMapper):
val_xh = self.graph.get_input_node(
node, idx=5 - miss_arg_num, copy=True)
data, dtype, shape = self.get_dynamic_shape(val_x.layer_name)
x_shape = val_x.out_shapes[0]
assert x_shape[1] == 1, 'only X with batch_size = 1 supported'
......@@ -1394,8 +1468,8 @@ class ONNXOpMapper(OpMapper):
inputs=val_b,
output=var_bi + ',' + var_bh,
param_attr={
'axis': 1,
'split': [hidden_size * 3, hidden_size * 3],
'dim': 1,
'num_or_sections': [hidden_size * 3, hidden_size * 3],
'name': string(node.layer_name + '.b/split')
})
var_bi0 = node.layer_name + '_bi0'
......@@ -1407,7 +1481,7 @@ class ONNXOpMapper(OpMapper):
'name': string(var_bi0)})
node.fluid_code.add_layer(
'elmentwise_add',
'elementwise_add',
inputs=[var_mm, var_bi0],
output=var_fc,
param_attr={
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict as _dict
import numpy as _np
default_op_mapping_field_values = _dict()
default_op_mapping_field_values['FLUID_OP'] = ''
default_op_mapping_field_values['FLUID_INPUT_ARGS'] = None
default_op_mapping_field_values['FLUID_OUTPUT_ARGS'] = None
default_op_mapping_field_values['ATTR_MAPPING'] = dict()
default_op_mapping_field_values['DEFAULTS'] = dict()
default_op_mapping_field_values['INPUT_PERM'] = None
default_op_mapping_field_values['OUTPUT_PERM'] = None
default_op_mapping_field_values['FILL_NAME_FIELD'] = True
default_op_mapping = {
'Shape': ['shape', ['X'], ['Out']],
'Clip': [
'clip', ['X'], ['Out'], dict(), dict(
min=(_np.asarray(
[255, 255, 127, 255], dtype=_np.uint8).view(_np.float32)[0]),
max=(_np.asarray(
[255, 255, 127, 127], dtype=_np.uint8).view(_np.float32)[0]), )
],
'Erf': ['erf', ['X'], ['Out']],
'Ceil': ['ceil', ['X'], ['Out']],
'ReduceMean': [
'reduce_mean', ['X'], ['Out'], dict(
axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
],
'ReduceSum': [
'reduce_sum', ['X'], ['Out'], dict(
axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
],
'ReduceMin': [
'reduce_min', ['X'], ['Out'], dict(
axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
],
'ReduceMax': [
'reduce_max', ['X'], ['Out'], dict(
axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
],
#active function
'Relu': ['relu', ['X'], ['Out']],
'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)],
'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)],
'ThresholdedRelu': [
'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'),
dict(alpha=1.)
],
'Tanh': ['tanh', ['X'], ['Out']],
'Sigmoid': ['sigmoid', ['X'], ['Out']],
'HardSigmoid': [
'hard_sigmoid', ['X'], ['Out'], dict(
alpha='slope', beta='offset'), dict(
slope=.2, offset=.5)
],
'Softsign': ['softsign', ['X'], ['Out']],
'Softplus': ['softplus', ['X'], ['Out']],
'Exp': ['exp', ['X'], ['Out']],
'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)],
'Sqrt': ['sqrt', ['X'], ['Out']],
'Floor': ['floor', ['X'], ['Out']],
'Abs': ['abs', ['X'], ['Out']],
}
default_ioa_constraint = {
'Gather': [(lambda i, o, a: a.get('axis', 0) == 0,
'only axis = 0 is supported')],
}
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
import x2paddle
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
from onnx import helper, onnx_pb
from x2paddle.op_mapper.paddle2onnx.opset9.opset import OpSet9
class OpSet10(OpSet9):
def __init__(self):
super(OpSet10, self).__init__()
def slice(self, op, block):
axes = op.attr('axes')
starts = op.attr('starts')
ends = op.attr('ends')
axes_name = self.get_name(op.type, 'axes')
starts_name = self.get_name(op.type, 'starts')
ends_name = self.get_name(op.type, 'ends')
axes_node = self.make_constant_node(axes_name,
onnx_pb.TensorProto.INT64, axes)
starts_node = self.make_constant_node(starts_name,
onnx_pb.TensorProto.INT64, starts)
ends_node = self.make_constant_node(ends_name,
onnx_pb.TensorProto.INT64, ends)
node = helper.make_node(
"Slice",
inputs=[op.input('Input')[0], starts_name, ends_name, axes_name],
outputs=op.output('Out'), )
return [starts_node, ends_node, axes_node, node]
def im2sequence(self, op, block):
from .paddle_custom_layer.im2sequence import im2sequence
return im2sequence(op, block)
def yolo_box(self, op, block):
from .paddle_custom_layer.yolo_box import yolo_box
return yolo_box(op, block)
def multiclass_nms(self, op, block):
from .paddle_custom_layer.multiclass_nms import multiclass_nms
return multiclass_nms(op, block)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import onnx
import numpy as np
from onnx import onnx_pb, helper
from x2paddle.op_mapper.paddle2onnx.opset9.paddle_custom_layer.im2sequence import im2sequence as im2sequence9
def im2sequence(op, block):
return im2sequence9(op, block)
......@@ -12,45 +12,21 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .register import register
def InstanceNormalization_shape(input_shape):
return input_shape
def InstanceNormalization_layer(inputs, name=None):
# TODO(lvmengsi@baidu.com): Check the accuracy when using fluid.layers.layer_norm.
epsilon = 1e-5
input_ = inputs[0]
mean = fluid.layers.reduce_mean(input_, dim=[2, 3], keep_dim=True)
var = fluid.layers.reduce_mean(
fluid.layers.square(input_ - mean), dim=[2, 3], keep_dim=True)
if name is not None:
scale_name = name + "_scale"
offset_name = name + "_offset"
scale_param = inputs[1]
offset_param = inputs[2]
scale = fluid.layers.create_parameter(
name=scale_param.name, shape=input_.shape[1:2], dtype="float32")
offset = fluid.layers.create_parameter(
name=offset_param.name, shape=input_.shape[1:2], dtype="float32")
tmp = fluid.layers.elementwise_mul(x=(input_ - mean), y=scale, axis=1)
tmp = tmp / fluid.layers.sqrt(var + epsilon)
tmp = fluid.layers.elementwise_add(tmp, offset, axis=1)
return tmp
def InstanceNormalization_weights(name, data=None):
weights_name = [name + '_scale']
return weights_name
register(
kind='InstanceNormalization',
shape=InstanceNormalization_shape,
layer=InstanceNormalization_layer,
child_func=None,
weights=InstanceNormalization_weights)
import math
import sys
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
import warnings
from onnx import helper, onnx_pb
from x2paddle.op_mapper.paddle2onnx.opset9.paddle_custom_layer.multiclass_nms import multiclass_nms as multiclass_nms9
def multiclass_nms(op, block):
"""
Convert the paddle multiclass_nms to onnx op.
This op is get the select boxes from origin boxes.
"""
return multiclass_nms9(op, block)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import onnx
import numpy as np
from onnx import onnx_pb, helper
from x2paddle.op_mapper.paddle2onnx.opset9.paddle_custom_layer.yolo_box import yolo_box as yolo_box9
def yolo_box(op, block):
return yolo_box9(op, block)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
import x2paddle
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
from onnx import helper, onnx_pb
from x2paddle.op_mapper.paddle2onnx.opset10.opset import OpSet10
class OpSet11(OpSet10):
def __init__(self):
super(OpSet11, self).__init__()
def relu6(self, op, block):
min_name = self.get_name(op.type, 'min')
max_name = self.get_name(op.type, 'max')
min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
0)
max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
op.attr('threshold'))
node = helper.make_node(
'Clip',
inputs=[op.input('X')[0], min_name, max_name],
outputs=op.output('Out'), )
return [min_node, max_node, node]
def pad2d(self, op, block):
x_shape = block.var(op.input('X')[0]).shape
paddings = op.attr('paddings')
onnx_pads = []
#TODO support pads is Variable
if op.attr('data_format') == 'NCHW':
pads = [
0, 0, paddings[0], paddings[2], 0, 0, paddings[1], paddings[3]
]
else:
pads = [
0, paddings[0], paddings[2], 0, 0, paddings[1], paddings[3], 0
]
pads_name = self.get_name(op.type, 'pads')
pads_node = self.make_constant_node(pads_name,
onnx_pb.TensorProto.INT64, pads)
constant_value_name = self.get_name(op.type, 'constant_value')
constant_value_node = self.make_constant_node(constant_value_name,
onnx_pb.TensorProto.FLOAT,
op.attr('pad_value'))
node = helper.make_node(
'Pad',
inputs=op.input('X') + [pads_name, constant_value_name],
outputs=op.output('Out'),
mode=op.attr('mode'))
return [pads_node, constant_value_node, node]
def bilinear_interp(self, op, block):
input_names = op.input_names
coordinate_transformation_mode = ''
align_corners = op.attr('align_corners')
align_mode = op.attr('align_mode')
if align_corners:
coordinate_transformation_mode = 'align_corners'
elif align_mode == 1:
coordinate_transformation_mode = 'asymmetric'
else:
coordinate_transformation_mode = 'half_pixel'
if ('OutSize' in input_names and len(op.input('OutSize')) > 0) or (
'SizeTensor' in input_names and
len(op.input('SizeTensor')) > 0):
node_list = list()
roi_node = self.make_constant_node(
self.get_name(op.type, 'roi'), onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(
roi_name, onnx_pb.TensorProto.FLOAT, [1, 1, 1, 1, 1, 1, 1, 1])
empty_name = self.get_name(op.type, 'empty')
empty_tensor = helper.make_tensor(
empty_name,
onnx_pb.TensorProto.FLOAT, (0, ),
np.array([]).astype('float32'),
raw=False)
empty_node = helper.make_node(
'Constant', [], outputs=[empty_name], value=empty_tensor)
shape_name0 = self.get_name(op.type, 'shape')
shape_node0 = helper.make_node(
'Shape', inputs=op.input('X'), outputs=[shape_name0])
starts_name = self.get_name(op.type, 'slice.starts')
starts_node = self.make_constant_node(
starts_name, onnx_pb.TensorProto.INT64, [0])
ends_name = self.get_name(op.type, 'slice.ends')
ends_node = self.make_constant_node(ends_name,
onnx_pb.TensorProto.INT64, [2])
shape_name1 = self.get_name(op.type, 'shape')
shape_node1 = helper.make_node(
'Slice',
inputs=[shape_name0, starts_name, ends_name],
outputs=[shape_name1])
node_list.extend([
roi_node, empty_node, shape_node0, starts_node, ends_node,
shape_node1
])
if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
cast_shape_name = self.get_name(op.type, "shape.cast")
cast_shape_node = helper.make_node(
'Cast',
inputs=op.input('OutSize'),
outputs=[cast_shape_name],
to=onnx_pb.TensorProto.INT64)
node_list.append(cast_shape_node)
else:
concat_shape_name = self.get_name(op.type, "shape.concat")
concat_shape_node = helper.make_node(
"Concat",
inputs=op.input('SizeTensor'),
outputs=[concat_shape_name],
axis=0)
cast_shape_name = self.get_name(op.type, "shape.cast")
cast_shape_node = helper.make_node(
'Cast',
inputs=[concat_shape_name],
outputs=[cast_shape_name],
to=onnx_pb.TensorProto.INT64)
node_list.extend([concat_shape_node, cast_shape_node])
shape_name3 = self.get_name(op.type, "shape.concat")
shape_node3 = helper.make_node(
'Concat',
inputs=[shape_name1, cast_shape_name],
outputs=[shape_name3],
axis=0)
result_node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], roi_name, empty_name, shape_name3],
outputs=op.output('Out'),
mode='linear',
coordinate_transformation_mode=coordinate_transformation_mode)
node_list.extend([shape_node3, result_node])
return node_list
elif 'Scale' in input_names and len(op.input('Scale')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], op.input('Scale')[0]],
outputs=op.output('Out'),
mode='linear',
coordinate_transformation_mode=coordinate_transformation_mode)
else:
out_shape = [op.attr('out_h'), op.attr('out_w')]
scale = op.attr('scale')
if out_shape.count(-1) > 0:
scale_name = self.get_name(op.type, 'scale')
scale_node = self.make_constant_node(scale_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, scale, scale])
roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(roi_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], roi_name, scale_name],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode
)
return [scale_node, roi_node, node]
else:
raise Exception("Unexpected situation happend")
return node
def nearest_interp(self, op, block):
input_names = op.input_names
coordinate_transformation_mode = ''
align_corners = op.attr('align_corners')
if align_corners:
coordinate_transformation_mode = 'align_corners'
else:
coordinate_transformation_mode = 'asymmetric'
if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], '', op.input('OutSize')[0]],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode)
elif 'Scale' in input_names and len(op.input('Scale')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], op.input('Scale')[0]],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode)
else:
out_shape = [op.attr('out_h'), op.attr('out_w')]
scale = op.attr('scale')
if out_shape.count(-1) > 0:
scale_name = self.get_name(op.type, 'scale')
scale_node = self.make_constant_node(scale_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, scale, scale])
roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(roi_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], roi_name, scale_name],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode
)
return [scale_node, roi_node, node]
else:
raise Exception("Unexpected situation happend")
return node
def hard_swish(self, op, block):
min_name = self.get_name(op.type, 'min')
max_name = self.get_name(op.type, 'max')
scale_name = self.get_name(op.type, 'scale')
offset_name = self.get_name(op.type, 'offset')
min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
0)
max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
op.attr('threshold'))
scale_node = self.make_constant_node(scale_name,
onnx_pb.TensorProto.FLOAT,
op.attr('scale'))
offset_node = self.make_constant_node(offset_name,
onnx_pb.TensorProto.FLOAT,
op.attr('offset'))
name0 = self.get_name(op.type, 'add')
node0 = helper.make_node(
'Add', inputs=[op.input('X')[0], offset_name], outputs=[name0])
name1 = self.get_name(op.type, 'relu')
node1 = helper.make_node(
'Clip',
inputs=[name0, min_name, max_name],
outputs=[name1], )
name2 = self.get_name(op.type, 'mul')
node2 = helper.make_node(
'Mul', inputs=[op.input('X')[0], name1], outputs=[name2])
node3 = helper.make_node(
'Div', inputs=[name2, scale_name], outputs=op.output('Out'))
return [
min_node, max_node, scale_node, offset_node, node0, node1, node2,
node3
]
def im2sequence(self, op, block):
from .paddle_custom_layer.im2sequence import im2sequence
return im2sequence(op, block)
def yolo_box(self, op, block):
from .paddle_custom_layer.yolo_box import yolo_box
return yolo_box(op, block)
def multiclass_nms(self, op, block):
from .paddle_custom_layer.multiclass_nms import multiclass_nms
return multiclass_nms(op, block)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import onnx
import numpy as np
from onnx import onnx_pb, helper
from x2paddle.op_mapper.paddle2onnx.opset10.paddle_custom_layer.im2sequence import im2sequence as im2sequence10
def im2sequence(op, block):
return im2sequence10(op, block)
......@@ -125,7 +125,7 @@ def multiclass_nms(op, block):
vals=[value]))
node_list.append(node)
# Ine this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# In this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# and the same time, decode the select indices to 1 * D, gather the select_indices
outputs_gather_1 = [result_name + "@gather_1"]
node_gather_1 = onnx.helper.make_node(
......@@ -405,12 +405,36 @@ def multiclass_nms(op, block):
inputs_concat_final_results = outputs_cast_topk_class + outputs_unsqueeze_topk_scores +\
outputs_gather_select_boxes
outputs_concat_final_results = outputs['Out']
node_concat_final_results = onnx.helper.make_node(
outputs_sort_by_socre_results = [result_name + "@concat_topk_scores"]
node_sort_by_socre_results = onnx.helper.make_node(
'Concat',
inputs=inputs_concat_final_results,
outputs=outputs_concat_final_results,
outputs=outputs_sort_by_socre_results,
axis=2)
node_list.append(node_concat_final_results)
node_list.append(node_sort_by_socre_results)
# select topk classes indices
outputs_squeeze_cast_topk_class = [result_name + "@squeeze_cast_topk_class"]
node_squeeze_cast_topk_class = onnx.helper.make_node(
'Squeeze',
inputs=outputs_cast_topk_class,
outputs=outputs_squeeze_cast_topk_class,
axes=[0, 2])
node_list.append(node_squeeze_cast_topk_class)
outputs_topk_select_classes_indices = [result_name + "@topk_select_topk_classes_scores",\
result_name + "@topk_select_topk_classes_indices"]
node_topk_select_topk_indices = onnx.helper.make_node(
'TopK',
inputs=outputs_squeeze_cast_topk_class + outputs_cast_topk_indices,
outputs=outputs_topk_select_classes_indices,
largest=0)
node_list.append(node_topk_select_topk_indices)
outputs_concat_final_results = outputs['Out']
node_concat_final_results = onnx.helper.make_node(
'Gather',
inputs=outputs_sort_by_socre_results +
[outputs_topk_select_classes_indices[1]],
outputs=outputs_concat_final_results,
axis=1)
node_list.append(node_concat_final_results)
return node_list
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import onnx
import numpy as np
from onnx import onnx_pb, helper
MAX_FLOAT = np.asarray([255, 255, 127, 127], dtype=np.uint8).view(np.float32)[0]
def get_old_name(arg, name_prefix=''):
prefix_index = arg.find(name_prefix)
if prefix_index != -1:
last_prefix = arg[len(name_prefix):]
else:
last_prefix = arg
idx = last_prefix.find('@')
if idx != -1:
last_prefix = last_prefix[:idx]
return name_prefix + last_prefix
def yolo_box(op, block):
inputs = dict()
outputs = dict()
attrs = dict()
for name in op.input_names:
inputs[name] = op.input(name)
for name in op.output_names:
outputs[name] = op.output(name)
for name in op.attr_names:
attrs[name] = op.attr(name)
model_name = outputs['Boxes'][0]
input_shape = block.vars[get_old_name(inputs['X'][0])].shape
image_size = inputs['ImgSize']
input_height = input_shape[2]
input_width = input_shape[3]
class_num = attrs['class_num']
anchors = attrs['anchors']
num_anchors = int(len(anchors)) // 2
downsample_ratio = attrs['downsample_ratio']
input_size = input_height * downsample_ratio
conf_thresh = attrs['conf_thresh']
conf_thresh_mat = np.ones([num_anchors * input_height *
input_width]) * conf_thresh
node_list = []
im_outputs = []
x_shape = [1, num_anchors, 5 + class_num, input_height, input_width]
name_x_shape = [model_name + "@x_shape"]
node_x_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_x_shape,
value=onnx.helper.make_tensor(
name=name_x_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[5],
vals=x_shape))
node_list.append(node_x_shape)
outputs_x_reshape = [model_name + "@reshape"]
node_x_reshape = onnx.helper.make_node(
'Reshape', inputs=inputs['X'] + name_x_shape, outputs=outputs_x_reshape)
node_list.append(node_x_reshape)
outputs_x_transpose = [model_name + "@x_transpose"]
node_x_transpose = onnx.helper.make_node(
'Transpose',
inputs=outputs_x_reshape,
outputs=outputs_x_transpose,
perm=[0, 1, 3, 4, 2])
node_list.append(node_x_transpose)
range_x = []
range_y = []
for i in range(0, input_width):
range_x.append(i)
for j in range(0, input_height):
range_y.append(j)
name_range_x = [model_name + "@range_x"]
node_range_x = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_range_x,
value=onnx.helper.make_tensor(
name=name_range_x[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=[input_width],
vals=range_x))
node_list.append(node_range_x)
name_range_y = [model_name + "@range_y"]
node_range_y = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_range_y,
value=onnx.helper.make_tensor(
name=name_range_y[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=[input_height],
vals=range_y))
node_list.append(node_range_y)
range_x_new_shape = [1, input_width]
range_y_new_shape = [input_height, 1]
name_range_x_new_shape = [model_name + "@range_x_new_shape"]
node_range_x_new_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_range_x_new_shape,
value=onnx.helper.make_tensor(
name=name_range_x_new_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(range_x_new_shape)],
vals=range_x_new_shape))
node_list.append(node_range_x_new_shape)
name_range_y_new_shape = [model_name + "@range_y_new_shape"]
node_range_y_new_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_range_y_new_shape,
value=onnx.helper.make_tensor(
name=name_range_y_new_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(range_y_new_shape)],
vals=range_y_new_shape))
node_list.append(node_range_y_new_shape)
outputs_range_x_reshape = [model_name + "@range_x_reshape"]
node_range_x_reshape = onnx.helper.make_node(
'Reshape',
inputs=name_range_x + name_range_x_new_shape,
outputs=outputs_range_x_reshape)
node_list.append(node_range_x_reshape)
outputs_range_y_reshape = [model_name + "@range_y_reshape"]
node_range_y_reshape = onnx.helper.make_node(
'Reshape',
inputs=name_range_y + name_range_y_new_shape,
outputs=outputs_range_y_reshape)
node_list.append(node_range_y_reshape)
outputs_grid_x = [model_name + "@grid_x"]
node_grid_x = onnx.helper.make_node(
"Tile",
inputs=outputs_range_x_reshape + name_range_y_new_shape,
outputs=outputs_grid_x)
node_list.append(node_grid_x)
outputs_grid_y = [model_name + "@grid_y"]
node_grid_y = onnx.helper.make_node(
"Tile",
inputs=outputs_range_y_reshape + name_range_x_new_shape,
outputs=outputs_grid_y)
node_list.append(node_grid_y)
outputs_box_x = [model_name + "@box_x"]
outputs_box_y = [model_name + "@box_y"]
outputs_box_w = [model_name + "@box_w"]
outputs_box_h = [model_name + "@box_h"]
outputs_conf = [model_name + "@conf"]
outputs_prob = [model_name + "@prob"]
node_split_input = onnx.helper.make_node(
"Split",
inputs=outputs_x_transpose,
outputs=outputs_box_x + outputs_box_y + outputs_box_w\
+ outputs_box_h + outputs_conf + outputs_prob,
axis=-1,
split=[1, 1, 1, 1, 1, class_num])
node_list.append(node_split_input)
outputs_box_x_sigmoid = [model_name + "@box_x_sigmoid"]
outputs_box_y_sigmoid = [model_name + "@box_y_sigmoid"]
node_box_x_sigmoid = onnx.helper.make_node(
"Sigmoid", inputs=outputs_box_x, outputs=outputs_box_x_sigmoid)
node_list.append(node_box_x_sigmoid)
node_box_y_sigmoid = onnx.helper.make_node(
"Sigmoid", inputs=outputs_box_y, outputs=outputs_box_y_sigmoid)
node_list.append(node_box_y_sigmoid)
outputs_box_x_squeeze = [model_name + "@box_x_squeeze"]
outputs_box_y_squeeze = [model_name + "@box_y_squeeze"]
node_box_x_squeeze = onnx.helper.make_node(
'Squeeze',
inputs=outputs_box_x_sigmoid,
outputs=outputs_box_x_squeeze,
axes=[4])
node_list.append(node_box_x_squeeze)
node_box_y_squeeze = onnx.helper.make_node(
'Squeeze',
inputs=outputs_box_y_sigmoid,
outputs=outputs_box_y_squeeze,
axes=[4])
node_list.append(node_box_y_squeeze)
outputs_box_x_add_grid = [model_name + "@box_x_add_grid"]
outputs_box_y_add_grid = [model_name + "@box_y_add_grid"]
node_box_x_add_grid = onnx.helper.make_node(
"Add",
inputs=outputs_grid_x + outputs_box_x_squeeze,
outputs=outputs_box_x_add_grid)
node_list.append(node_box_x_add_grid)
node_box_y_add_grid = onnx.helper.make_node(
"Add",
inputs=outputs_grid_y + outputs_box_y_squeeze,
outputs=outputs_box_y_add_grid)
node_list.append(node_box_y_add_grid)
name_input_h = [model_name + "@input_h"]
name_input_w = [model_name + "@input_w"]
node_input_h = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_input_h,
value=onnx.helper.make_tensor(
name=name_input_w[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[input_height]))
node_list.append(node_input_h)
node_input_w = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_input_w,
value=onnx.helper.make_tensor(
name=name_input_w[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[input_width]))
node_list.append(node_input_w)
outputs_box_x_encode = [model_name + "@box_x_encode"]
outputs_box_y_encode = [model_name + "@box_y_encode"]
node_box_x_encode = onnx.helper.make_node(
'Div',
inputs=outputs_box_x_add_grid + name_input_w,
outputs=outputs_box_x_encode)
node_list.append(node_box_x_encode)
node_box_y_encode = onnx.helper.make_node(
'Div',
inputs=outputs_box_y_add_grid + name_input_h,
outputs=outputs_box_y_encode)
node_list.append(node_box_y_encode)
name_anchor_tensor = [model_name + "@anchor_tensor"]
node_anchor_tensor = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_anchor_tensor,
value=onnx.helper.make_tensor(
name=name_anchor_tensor[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=[len(anchors)],
vals=anchors))
node_list.append(node_anchor_tensor)
anchor_shape = [int(num_anchors), 2]
name_anchor_shape = [model_name + "@anchor_shape"]
node_anchor_shape = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_anchor_shape,
value=onnx.helper.make_tensor(
name=name_anchor_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[2],
vals=anchor_shape))
node_list.append(node_anchor_shape)
outputs_anchor_tensor_reshape = [model_name + "@anchor_tensor_reshape"]
node_anchor_tensor_reshape = onnx.helper.make_node(
"Reshape",
inputs=name_anchor_tensor + name_anchor_shape,
outputs=outputs_anchor_tensor_reshape)
node_list.append(node_anchor_tensor_reshape)
name_input_size = [model_name + "@input_size"]
node_input_size = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_input_size,
value=onnx.helper.make_tensor(
name=name_input_size[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[input_size]))
node_list.append(node_input_size)
outputs_anchors_div_input_size = [model_name + "@anchors_div_input_size"]
node_anchors_div_input_size = onnx.helper.make_node(
"Div",
inputs=outputs_anchor_tensor_reshape + name_input_size,
outputs=outputs_anchors_div_input_size)
node_list.append(node_anchors_div_input_size)
outputs_anchor_w = [model_name + "@anchor_w"]
outputs_anchor_h = [model_name + "@anchor_h"]
node_anchor_split = onnx.helper.make_node(
'Split',
inputs=outputs_anchors_div_input_size,
outputs=outputs_anchor_w + outputs_anchor_h,
axis=1,
split=[1, 1])
node_list.append(node_anchor_split)
new_anchor_shape = [1, int(num_anchors), 1, 1]
name_new_anchor_shape = [model_name + "@new_anchor_shape"]
node_new_anchor_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_new_anchor_shape,
value=onnx.helper.make_tensor(
name=name_new_anchor_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(new_anchor_shape)],
vals=new_anchor_shape))
node_list.append(node_new_anchor_shape)
outputs_anchor_w_reshape = [model_name + "@anchor_w_reshape"]
outputs_anchor_h_reshape = [model_name + "@anchor_h_reshape"]
node_anchor_w_reshape = onnx.helper.make_node(
'Reshape',
inputs=outputs_anchor_w + name_new_anchor_shape,
outputs=outputs_anchor_w_reshape)
node_list.append(node_anchor_w_reshape)
node_anchor_h_reshape = onnx.helper.make_node(
'Reshape',
inputs=outputs_anchor_h + name_new_anchor_shape,
outputs=outputs_anchor_h_reshape)
node_list.append(node_anchor_h_reshape)
outputs_box_w_squeeze = [model_name + "@box_w_squeeze"]
node_box_w_squeeze = onnx.helper.make_node(
'Squeeze',
inputs=outputs_box_w,
outputs=outputs_box_w_squeeze,
axes=[4])
node_list.append(node_box_w_squeeze)
outputs_box_h_squeeze = [model_name + "@box_h_squeeze"]
node_box_h_squeeze = onnx.helper.make_node(
'Squeeze',
inputs=outputs_box_h,
outputs=outputs_box_h_squeeze,
axes=[4])
node_list.append(node_box_h_squeeze)
outputs_box_w_exp = [model_name + "@box_w_exp"]
node_box_w_exp = onnx.helper.make_node(
"Exp", inputs=outputs_box_w_squeeze, outputs=outputs_box_w_exp)
node_list.append(node_box_w_exp)
outputs_box_h_exp = [model_name + "@box_h_exp"]
node_box_h_exp = onnx.helper.make_node(
"Exp", inputs=outputs_box_h_squeeze, outputs=outputs_box_h_exp)
node_list.append(node_box_h_exp)
outputs_box_w_encode = [model_name + "box_w_encode"]
outputs_box_h_encode = [model_name + "box_h_encode"]
node_box_w_encode = onnx.helper.make_node(
'Mul',
inputs=outputs_box_w_exp + outputs_anchor_w_reshape,
outputs=outputs_box_w_encode)
node_list.append(node_box_w_encode)
node_box_h_encode = onnx.helper.make_node(
'Mul',
inputs=outputs_box_h_exp + outputs_anchor_h_reshape,
outputs=outputs_box_h_encode)
node_list.append(node_box_h_encode)
outputs_conf_sigmoid = [model_name + "@conf_sigmoid"]
node_conf_sigmoid = onnx.helper.make_node(
'Sigmoid', inputs=outputs_conf, outputs=outputs_conf_sigmoid)
node_list.append(node_conf_sigmoid)
name_conf_thresh = [model_name + "@conf_thresh"]
node_conf_thresh = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_conf_thresh,
value=onnx.helper.make_tensor(
name=name_conf_thresh[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=[num_anchors * input_height * input_width],
vals=conf_thresh_mat))
node_list.append(node_conf_thresh)
conf_shape = [1, int(num_anchors), input_height, input_width, 1]
name_conf_shape = [model_name + "@conf_shape"]
node_conf_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_conf_shape,
value=onnx.helper.make_tensor(
name=name_conf_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(conf_shape)],
vals=conf_shape))
node_list.append(node_conf_shape)
outputs_conf_thresh_reshape = [model_name + "@conf_thresh_reshape"]
node_conf_thresh_reshape = onnx.helper.make_node(
'Reshape',
inputs=name_conf_thresh + name_conf_shape,
outputs=outputs_conf_thresh_reshape)
node_list.append(node_conf_thresh_reshape)
outputs_conf_sub = [model_name + "@conf_sub"]
node_conf_sub = onnx.helper.make_node(
'Sub',
inputs=outputs_conf_sigmoid + outputs_conf_thresh_reshape,
outputs=outputs_conf_sub)
node_list.append(node_conf_sub)
outputs_conf_clip = [model_name + "@conf_clip"]
node_conf_clip = onnx.helper.make_node(
'Clip', inputs=outputs_conf_sub, outputs=outputs_conf_clip)
node_list.append(node_conf_clip)
zeros = [0]
name_zeros = [model_name + "@zeros"]
node_zeros = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_zeros,
value=onnx.helper.make_tensor(
name=name_zeros[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=zeros))
node_list.append(node_zeros)
outputs_conf_clip_bool = [model_name + "@conf_clip_bool"]
node_conf_clip_bool = onnx.helper.make_node(
'Greater',
inputs=outputs_conf_clip + name_zeros,
outputs=outputs_conf_clip_bool)
node_list.append(node_conf_clip_bool)
outputs_conf_clip_cast = [model_name + "@conf_clip_cast"]
node_conf_clip_cast = onnx.helper.make_node(
'Cast',
inputs=outputs_conf_clip_bool,
outputs=outputs_conf_clip_cast,
to=1)
node_list.append(node_conf_clip_cast)
outputs_conf_set_zero = [model_name + "@conf_set_zero"]
node_conf_set_zero = onnx.helper.make_node(
'Mul',
inputs=outputs_conf_sigmoid + outputs_conf_clip_cast,
outputs=outputs_conf_set_zero)
node_list.append(node_conf_set_zero)
outputs_prob_sigmoid = [model_name + "@prob_sigmoid"]
node_prob_sigmoid = onnx.helper.make_node(
'Sigmoid', inputs=outputs_prob, outputs=outputs_prob_sigmoid)
node_list.append(node_prob_sigmoid)
new_shape = [1, int(num_anchors), input_height, input_width, 1]
name_new_shape = [model_name + "@new_shape"]
node_new_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_new_shape,
value=onnx.helper.make_tensor(
name=name_new_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(new_shape)],
vals=new_shape))
node_list.append(node_new_shape)
outputs_conf_new_shape = [model_name + "@_conf_new_shape"]
node_conf_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_conf_set_zero + name_new_shape,
outputs=outputs_conf_new_shape)
node_list.append(node_conf_new_shape)
outputs_score = [model_name + "@score"]
node_score = onnx.helper.make_node(
'Mul',
inputs=outputs_prob_sigmoid + outputs_conf_new_shape,
outputs=outputs_score)
node_list.append(node_score)
outputs_conf_bool = [model_name + "@conf_bool"]
node_conf_bool = onnx.helper.make_node(
'Greater',
inputs=outputs_conf_new_shape + name_zeros,
outputs=outputs_conf_bool)
node_list.append(node_conf_bool)
outputs_box_x_new_shape = [model_name + "@box_x_new_shape"]
node_box_x_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_box_x_encode + name_new_shape,
outputs=outputs_box_x_new_shape)
node_list.append(node_box_x_new_shape)
outputs_box_y_new_shape = [model_name + "@box_y_new_shape"]
node_box_y_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_box_y_encode + name_new_shape,
outputs=outputs_box_y_new_shape)
node_list.append(node_box_y_new_shape)
outputs_box_w_new_shape = [model_name + "@box_w_new_shape"]
node_box_w_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_box_w_encode + name_new_shape,
outputs=outputs_box_w_new_shape)
node_list.append(node_box_w_new_shape)
outputs_box_h_new_shape = [model_name + "@box_h_new_shape"]
node_box_h_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_box_h_encode + name_new_shape,
outputs=outputs_box_h_new_shape)
node_list.append(node_box_h_new_shape)
outputs_pred_box = [model_name + "@pred_box"]
node_pred_box = onnx.helper.make_node(
'Concat',
inputs=outputs_box_x_new_shape + outputs_box_y_new_shape + \
outputs_box_w_new_shape + outputs_box_h_new_shape,
outputs=outputs_pred_box,
axis=4)
node_list.append(node_pred_box)
outputs_conf_cast = [model_name + "conf_cast"]
node_conf_cast = onnx.helper.make_node(
'Cast', inputs=outputs_conf_bool, outputs=outputs_conf_cast, to=1)
node_list.append(node_conf_cast)
outputs_pred_box_mul_conf = [model_name + "@pred_box_mul_conf"]
node_pred_box_mul_conf = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box + outputs_conf_cast,
outputs=outputs_pred_box_mul_conf)
node_list.append(node_pred_box_mul_conf)
box_shape = [1, int(num_anchors) * input_height * input_width, 4]
name_box_shape = [model_name + "@box_shape"]
node_box_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_box_shape,
value=onnx.helper.make_tensor(
name=name_box_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(box_shape)],
vals=box_shape))
node_list.append(node_box_shape)
outputs_pred_box_new_shape = [model_name + "@pred_box_new_shape"]
node_pred_box_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_pred_box_mul_conf + name_box_shape,
outputs=outputs_pred_box_new_shape)
node_list.append(node_pred_box_new_shape)
outputs_pred_box_x = [model_name + "@_pred_box_x"]
outputs_pred_box_y = [model_name + "@_pred_box_y"]
outputs_pred_box_w = [model_name + "@_pred_box_w"]
outputs_pred_box_h = [model_name + "@_pred_box_h"]
node_pred_box_split = onnx.helper.make_node(
'Split',
inputs=outputs_pred_box_new_shape,
outputs=outputs_pred_box_x + outputs_pred_box_y + outputs_pred_box_w +
outputs_pred_box_h,
axis=2)
node_list.append(node_pred_box_split)
name_number_two = [model_name + "@number_two"]
node_number_two = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_number_two,
value=onnx.helper.make_tensor(
name=name_number_two[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[2]))
node_list.append(node_number_two)
outputs_half_w = [model_name + "@half_w"]
node_half_w = onnx.helper.make_node(
"Div",
inputs=outputs_pred_box_w + name_number_two,
outputs=outputs_half_w)
node_list.append(node_half_w)
outputs_half_h = [model_name + "@half_h"]
node_half_h = onnx.helper.make_node(
"Div",
inputs=outputs_pred_box_h + name_number_two,
outputs=outputs_half_h)
node_list.append(node_half_h)
outputs_pred_box_x1 = [model_name + "@pred_box_x1"]
node_pred_box_x1 = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_x + outputs_half_w,
outputs=outputs_pred_box_x1)
node_list.append(node_pred_box_x1)
outputs_pred_box_y1 = [model_name + "@pred_box_y1"]
node_pred_box_y1 = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_y + outputs_half_h,
outputs=outputs_pred_box_y1)
node_list.append(node_pred_box_y1)
outputs_pred_box_x2 = [model_name + "@pred_box_x2"]
node_pred_box_x2 = onnx.helper.make_node(
'Add',
inputs=outputs_pred_box_x + outputs_half_w,
outputs=outputs_pred_box_x2)
node_list.append(node_pred_box_x2)
outputs_pred_box_y2 = [model_name + "@pred_box_y2"]
node_pred_box_y2 = onnx.helper.make_node(
'Add',
inputs=outputs_pred_box_y + outputs_half_h,
outputs=outputs_pred_box_y2)
node_list.append(node_pred_box_y2)
outputs_sqeeze_image_size = [model_name + "@sqeeze_image_size"]
node_sqeeze_image_size = onnx.helper.make_node(
"Squeeze",
axes=[0],
inputs=image_size,
outputs=outputs_sqeeze_image_size)
node_list.append(node_sqeeze_image_size)
output_img_height = [model_name + "@img_height"]
output_img_width = [model_name + "@img_width"]
node_image_size_split = onnx.helper.make_node(
"Split",
inputs=outputs_sqeeze_image_size,
outputs=output_img_height + output_img_width,
axis=-1,
split=[1, 1])
node_list.append(node_image_size_split)
output_img_width_cast = [model_name + "@img_width_cast"]
node_img_width_cast = onnx.helper.make_node(
'Cast', inputs=output_img_width, outputs=output_img_width_cast, to=1)
node_list.append(node_img_width_cast)
output_img_height_cast = [model_name + "@img_height_cast"]
node_img_height_cast = onnx.helper.make_node(
'Cast', inputs=output_img_height, outputs=output_img_height_cast, to=1)
node_list.append(node_img_height_cast)
outputs_pred_box_x1_decode = [model_name + "@pred_box_x1_decode"]
outputs_pred_box_y1_decode = [model_name + "@pred_box_y1_decode"]
outputs_pred_box_x2_decode = [model_name + "@pred_box_x2_decode"]
outputs_pred_box_y2_decode = [model_name + "@pred_box_y2_decode"]
node_pred_box_x1_decode = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box_x1 + output_img_width_cast,
outputs=outputs_pred_box_x1_decode)
node_list.append(node_pred_box_x1_decode)
node_pred_box_y1_decode = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box_y1 + output_img_height_cast,
outputs=outputs_pred_box_y1_decode)
node_list.append(node_pred_box_y1_decode)
node_pred_box_x2_decode = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box_x2 + output_img_width_cast,
outputs=outputs_pred_box_x2_decode)
node_list.append(node_pred_box_x2_decode)
node_pred_box_y2_decode = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box_y2 + output_img_height_cast,
outputs=outputs_pred_box_y2_decode)
node_list.append(node_pred_box_y2_decode)
name_number_one = [model_name + "@one"]
node_number_one = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_number_one,
value=onnx.helper.make_tensor(
name=name_number_one[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[1]))
node_list.append(node_number_one)
output_new_img_height = [model_name + "@new_img_height"]
node_new_img_height = onnx.helper.make_node(
'Sub',
inputs=output_img_height_cast + name_number_one,
outputs=output_new_img_height)
node_list.append(node_new_img_height)
output_new_img_width = [model_name + "@new_img_width"]
node_new_img_width = onnx.helper.make_node(
'Sub',
inputs=output_img_width_cast + name_number_one,
outputs=output_new_img_width)
node_list.append(node_new_img_width)
outputs_pred_box_x2_sub_w = [model_name + "@pred_box_x2_sub_w"]
node_pred_box_x2_sub_w = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_x2_decode + output_new_img_width,
outputs=outputs_pred_box_x2_sub_w)
node_list.append(node_pred_box_x2_sub_w)
outputs_pred_box_y2_sub_h = [model_name + "@pred_box_y2_sub_h"]
node_pred_box_y2_sub_h = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_y2_decode + output_new_img_height,
outputs=outputs_pred_box_y2_sub_h)
node_list.append(node_pred_box_y2_sub_h)
outputs_pred_box_x1_clip = [model_name + "@pred_box_x1_clip"]
outputs_pred_box_y1_clip = [model_name + "@pred_box_y1_clip"]
outputs_pred_box_x2_clip = [model_name + "@pred_box_x2_clip"]
outputs_pred_box_y2_clip = [model_name + "@pred_box_y2_clip"]
min_const_name = model_name + "@pred_box_min_const"
max_const_name = model_name + "@pred_box_max_const"
min_const = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=[min_const_name],
value=onnx.helper.make_tensor(
name=min_const_name,
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[0.0]))
node_list.append(min_const)
max_const = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=[max_const_name],
value=onnx.helper.make_tensor(
name=max_const_name,
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[MAX_FLOAT]))
node_list.append(max_const)
node_pred_box_x1_clip = onnx.helper.make_node(
'Clip',
inputs=outputs_pred_box_x1_decode + [min_const_name, max_const_name],
outputs=outputs_pred_box_x1_clip)
node_list.append(node_pred_box_x1_clip)
node_pred_box_y1_clip = onnx.helper.make_node(
'Clip',
inputs=outputs_pred_box_y1_decode + [min_const_name, max_const_name],
outputs=outputs_pred_box_y1_clip)
node_list.append(node_pred_box_y1_clip)
node_pred_box_x2_clip = onnx.helper.make_node(
'Clip',
inputs=outputs_pred_box_x2_sub_w + [min_const_name, max_const_name],
outputs=outputs_pred_box_x2_clip)
node_list.append(node_pred_box_x2_clip)
node_pred_box_y2_clip = onnx.helper.make_node(
'Clip',
inputs=outputs_pred_box_y2_sub_h + [min_const_name, max_const_name],
outputs=outputs_pred_box_y2_clip)
node_list.append(node_pred_box_y2_clip)
outputs_pred_box_x2_res = [model_name + "@box_x2_res"]
node_pred_box_x2_res = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_x2_decode + outputs_pred_box_x2_clip,
outputs=outputs_pred_box_x2_res)
node_list.append(node_pred_box_x2_res)
outputs_pred_box_y2_res = [model_name + "@box_y2_res"]
node_pred_box_y2_res = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_y2_decode + outputs_pred_box_y2_clip,
outputs=outputs_pred_box_y2_res)
node_list.append(node_pred_box_y2_res)
node_pred_box_result = onnx.helper.make_node(
'Concat',
inputs=outputs_pred_box_x1_clip + outputs_pred_box_y1_clip +
outputs_pred_box_x2_res + outputs_pred_box_y2_res,
outputs=outputs['Boxes'],
axis=-1)
node_list.append(node_pred_box_result)
score_shape = [1, input_height * input_width * int(num_anchors), class_num]
name_score_shape = [model_name + "@score_shape"]
node_score_shape = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_score_shape,
value=onnx.helper.make_tensor(
name=name_score_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(score_shape)],
vals=score_shape))
node_list.append(node_score_shape)
node_score_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_score + name_score_shape,
outputs=outputs['Scores'])
node_list.append(node_score_new_shape)
return node_list
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
......@@ -23,7 +23,7 @@ import onnx
from onnx import helper, onnx_pb
class PaddleOpMapper(object):
class OpSet9(object):
def __init__(self):
self.paddle_onnx_dtype_map = {
core.VarDesc.VarType.FP32: onnx_pb.TensorProto.FLOAT,
......@@ -34,63 +34,8 @@ class PaddleOpMapper(object):
core.VarDesc.VarType.INT64: onnx_pb.TensorProto.INT64,
core.VarDesc.VarType.BOOL: onnx_pb.TensorProto.BOOL
}
self.name_counter = dict()
def convert(self, program, save_dir):
weight_nodes = self.convert_weights(program)
op_nodes = list()
input_nodes = list()
output_nodes = list()
unsupported_ops = set()
print("Translating PaddlePaddle to ONNX...\n")
for block in program.blocks:
for i, op in enumerate(block.ops):
sys.stdout.write(
"\rTotal:{}, Current:{} : {} ".format(
len(block.ops), i + 1, op.type))
sys.stdout.flush()
if not hasattr(self, op.type):
unsupported_ops.add(op.type)
continue
if len(unsupported_ops) > 0:
continue
node = getattr(self, op.type)(op, block)
if op.type == 'feed':
input_nodes.append(node)
elif op.type == 'fetch':
output_nodes.append(node)
else:
if isinstance(node, list):
op_nodes = op_nodes + node
else:
op_nodes.append(node)
if len(unsupported_ops) > 0:
print("\nThere's {} ops are not supported yet".format(
len(unsupported_ops)))
for op in unsupported_ops:
print("=========== {} ===========".format(op))
return
graph = helper.make_graph(
nodes=weight_nodes + op_nodes,
name='onnx_model_from_paddle',
initializer=[],
inputs=input_nodes,
outputs=output_nodes)
model = helper.make_model(graph, producer_name='X2Paddle')
onnx.checker.check_model(model)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
with open(os.path.join(save_dir, 'x2paddle_model.onnx'), 'wb') as f:
f.write(model.SerializeToString())
print("\nTranslated model saved in {}".format(
os.path.join(save_dir, 'x2paddle_model.onnx')))
def get_name(self, op_name, var_name):
name = 'p2o.{}.{}'.format(op_name, var_name)
if name not in self.name_counter:
......@@ -99,6 +44,21 @@ class PaddleOpMapper(object):
self.name_counter[name] += 1
return name + '.{}'.format(self.name_counter[name])
def make_constant_node(self, name, dtype, value=None):
if isinstance(value, list):
dims = (len(value), )
elif value is None:
dims = ()
value = []
else:
dims = ()
value = [value]
tensor = helper.make_tensor(
name=name, data_type=dtype, dims=dims, vals=value)
node = helper.make_node(
'Constant', inputs=[], outputs=[name], value=tensor)
return node
def convert_weights(self, program):
var_names = program.global_block().vars
nodes = list()
......@@ -119,21 +79,6 @@ class PaddleOpMapper(object):
nodes.append(node)
return nodes
def make_constant_node(self, name, dtype, value=None):
if isinstance(value, list):
dims = (len(value), )
elif value is None:
dims = ()
value = []
else:
dims = ()
value = [value]
tensor = helper.make_tensor(
name=name, data_type=dtype, dims=dims, vals=value)
node = helper.make_node(
'Constant', inputs=[], outputs=[name], value=tensor)
return node
def conv2d(self, op, block):
kernel_shape = block.var(op.input('Filter')[0]).shape
node = helper.make_node(
......@@ -251,6 +196,8 @@ class PaddleOpMapper(object):
pool_type[op.attr('pooling_type')][1],
inputs=op.input('X'),
outputs=op.output('Out'), )
elif op.attr('adaptive'):
raise Excpetion("ONNX cannot support adaptive pool")
else:
input_shape = block.var(op.input('X')[0]).shape
k_size = op.attr('ksize')
......@@ -268,6 +215,28 @@ class PaddleOpMapper(object):
pads=op.attr('paddings') + op.attr('paddings'))
return node
def pad2d(self, op, block):
x_shape = block.var(op.input('X')[0]).shape
paddings = op.attr('paddings')
onnx_pads = []
if op.attr('data_format') == 'NCHW':
pads = [
0, 0, paddings[0], paddings[2], 0, 0, paddings[1], paddings[3]
]
else:
pads = [
0, paddings[0], paddings[2], 0, 0, paddings[1], paddings[3], 0
]
#TODO support pads is Variable
node = helper.make_node(
'Pad',
inputs=op.input('X'),
outputs=op.output('Out'),
mode=op.attr('mode'),
value=op.attr('pad_value'),
pads=pads)
return node
def softmax(self, op, block):
axis = op.attr('axis')
shape = block.var(op.output('Out')[0]).shape
......@@ -397,17 +366,14 @@ class PaddleOpMapper(object):
return self.conv2d(op, block)
def relu6(self, op, block):
min_name = self.get_name(op.type, 'min')
max_name = self.get_name(op.type, 'max')
min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
0)
max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
op.attr('threshold'))
threshold = op.attr('threshold')
node = helper.make_node(
'Clip',
inputs=[op.input('X')[0], min_name, max_name],
outputs=op.output('Out'), )
return [min_node, max_node, node]
inputs=[op.input('X')[0]],
outputs=op.output('Out'),
max=threshold,
min=0.0)
return [node]
def shape(self, op, block):
node = helper.make_node(
......@@ -435,21 +401,14 @@ class PaddleOpMapper(object):
axes = op.attr('axes')
starts = op.attr('starts')
ends = op.attr('ends')
axes_name = self.get_name(op.type, 'axes')
starts_name = self.get_name(op.type, 'starts')
ends_name = self.get_name(op.type, 'ends')
axes_node = self.make_constant_node(axes_name,
onnx_pb.TensorProto.INT64, axes)
starts_node = self.make_constant_node(starts_name,
onnx_pb.TensorProto.INT64, starts)
ends_node = self.make_constant_node(ends_name,
onnx_pb.TensorProto.INT64, ends)
node = helper.make_node(
"Slice",
inputs=[op.input('Input')[0], starts_name, ends_name, axes_name],
outputs=op.output('Out'), )
return [starts_node, ends_node, axes_node, node]
outputs=op.output('Out'),
axes=axes,
starts=starts,
ends=ends)
return [node]
def fill_constant(self, op, block):
value = op.attr('value')
......@@ -544,27 +503,15 @@ class PaddleOpMapper(object):
def bilinear_interp(self, op, block):
input_names = op.input_names
coordinate_transformation_mode = 'half_pixel'
if op.attr('align_corners'):
coordinate_transformation_mode = 'align_corners'
input_shape = block.vars[op.input('X')[0]].shape
if op.attr('align_corners') or op.attr('align_mode') == 0:
raise Exception(
"Resize in onnx(opset<=10) only support coordinate_transformation_mode: 'asymmetric'."
)
if ('OutSize' in input_names and len(op.input('OutSize')) > 0) or (
'SizeTensor' in input_names and
len(op.input('SizeTensor')) > 0):
node_list = list()
roi_node = self.make_constant_node(
self.get_name(op.type, 'roi'), onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(
roi_name, onnx_pb.TensorProto.FLOAT, [1, 1, 1, 1, 1, 1, 1, 1])
empty_name = self.get_name(op.type, 'empty')
empty_tensor = helper.make_tensor(
empty_name,
onnx_pb.TensorProto.FLOAT, (0, ),
np.array([]).astype('float32'),
raw=False)
empty_node = helper.make_node(
'Constant', [], outputs=[empty_name], value=empty_tensor)
shape_name0 = self.get_name(op.type, 'shape')
shape_node0 = helper.make_node(
'Shape', inputs=op.input('X'), outputs=[shape_name0])
......@@ -579,16 +526,7 @@ class PaddleOpMapper(object):
'Slice',
inputs=[shape_name0, starts_name, ends_name],
outputs=[shape_name1])
node_list.extend([
roi_node, empty_node, shape_node0, starts_node, ends_node,
shape_node1
])
# shape_name2 = self.get_name(op.type, "shape.cast")
# shape_node2 = helper.make_node(
# 'Cast',
# inputs=op.input('OutSize'),
# outputs=[shape_name2],
# to=onnx_pb.TensorProto.INT64)
node_list.extend([shape_node0, starts_node, ends_node, shape_node1])
if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
cast_shape_name = self.get_name(op.type, "shape.cast")
cast_shape_node = helper.make_node(
......@@ -598,7 +536,8 @@ class PaddleOpMapper(object):
to=onnx_pb.TensorProto.INT64)
node_list.append(cast_shape_node)
else:
concat_shape_name = self.get_name(op.type, "shape.concat")
concat_shape_name = self.get_name(
op.type, op.output('Out')[0] + "shape.concat")
concat_shape_node = helper.make_node(
"Concat",
inputs=op.input('SizeTensor'),
......@@ -611,27 +550,46 @@ class PaddleOpMapper(object):
outputs=[cast_shape_name],
to=onnx_pb.TensorProto.INT64)
node_list.extend([concat_shape_node, cast_shape_node])
shape_name3 = self.get_name(op.type, "shape.concat")
shape_node3 = helper.make_node(
shape_name2 = self.get_name(op.type, "shape.concat")
shape_node2 = helper.make_node(
'Concat',
inputs=[shape_name1, cast_shape_name],
outputs=[shape_name3],
outputs=[shape_name2],
axis=0)
node_list.append(shape_node2)
cast_shape_name2 = self.get_name(op.type, "shape.cast")
cast_shape_node2 = helper.make_node(
'Cast',
inputs=[shape_name2],
outputs=[cast_shape_name2],
to=onnx_pb.TensorProto.FLOAT)
node_list.append(cast_shape_node2)
cast_shape_name0 = self.get_name(op.type, "shape.cast")
cast_shape_node0 = helper.make_node(
'Cast',
inputs=[shape_name0],
outputs=[cast_shape_name0],
to=onnx_pb.TensorProto.FLOAT)
node_list.append(cast_shape_node0)
outputs_h_w_scales = op.output('Out')[0] + "@out_hw_scales"
node_h_w_scales = helper.make_node(
'Div',
inputs=[cast_shape_name2, cast_shape_name0],
outputs=[outputs_h_w_scales])
node_list.append(node_h_w_scales)
result_node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], roi_name, empty_name, shape_name3],
inputs=[op.input('X')[0], outputs_h_w_scales],
outputs=op.output('Out'),
mode='linear',
coordinate_transformation_mode=coordinate_transformation_mode)
node_list.extend([shape_node3, result_node])
mode='linear')
node_list.extend([result_node])
return node_list
elif 'Scale' in input_names and len(op.input('Scale')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], op.input('Scale')[0]],
outputs=op.output('Out'),
mode='linear',
coordinate_transformation_mode=coordinate_transformation_mode)
mode='linear')
else:
out_shape = [op.attr('out_h'), op.attr('out_w')]
scale = op.attr('scale')
......@@ -640,41 +598,34 @@ class PaddleOpMapper(object):
scale_node = self.make_constant_node(scale_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, scale, scale])
roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(roi_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], roi_name, scale_name],
inputs=[op.input('X')[0], scale_name],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode
)
return [scale_node, roi_node, node]
mode='linear')
return [scale_node, node]
else:
raise Exception("Unexpected situation happend")
return node
def nearest_interp(self, op, block):
input_names = op.input_names
coordinate_transformation_mode = 'half_pixel'
if op.attr('align_corners'):
coordinate_transformation_mode = 'align_corners'
raise Exception(
"Resize in onnx(opset<=10) only support coordinate_transformation_mode: 'asymmetric'."
)
if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], '', op.input('OutSize')[0]],
inputs=[op.input('X')[0], op.input('OutSize')[0]],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode)
mode='nearest')
elif 'Scale' in input_names and len(op.input('Scale')) > 0:
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], op.input('Scale')[0]],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode)
mode='nearest')
else:
out_shape = [op.attr('out_h'), op.attr('out_w')]
scale = op.attr('scale')
......@@ -683,18 +634,12 @@ class PaddleOpMapper(object):
scale_node = self.make_constant_node(scale_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, scale, scale])
roi_name = self.get_name(op.type, 'roi')
roi_node = self.make_constant_node(roi_name,
onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
node = helper.make_node(
'Resize',
inputs=[op.input('X')[0], roi_name, scale_name],
inputs=[op.input('X')[0], scale_name],
outputs=op.output('Out'),
mode='nearest',
coordinate_transformation_mode=coordinate_transformation_mode
)
return [scale_node, roi_node, node]
mode='nearest')
return [scale_node, node]
else:
raise Exception("Unexpected situation happend")
return node
......@@ -711,14 +656,8 @@ class PaddleOpMapper(object):
return node
def hard_swish(self, op, block):
min_name = self.get_name(op.type, 'min')
max_name = self.get_name(op.type, 'max')
scale_name = self.get_name(op.type, 'scale')
offset_name = self.get_name(op.type, 'offset')
min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
0)
max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
op.attr('threshold'))
scale_node = self.make_constant_node(scale_name,
onnx_pb.TensorProto.FLOAT,
op.attr('scale'))
......@@ -730,19 +669,20 @@ class PaddleOpMapper(object):
node0 = helper.make_node(
'Add', inputs=[op.input('X')[0], offset_name], outputs=[name0])
name1 = self.get_name(op.type, 'relu')
min_value = op.attr('min')
max_value = op.attr('max')
node1 = helper.make_node(
'Clip',
inputs=[name0, min_name, max_name],
outputs=[name1], )
inputs=[name0],
outputs=[name1],
max=max_value,
min=min_value)
name2 = self.get_name(op.type, 'mul')
node2 = helper.make_node(
'Mul', inputs=[op.input('X')[0], name1], outputs=[name2])
node3 = helper.make_node(
'Div', inputs=[name2, scale_name], outputs=op.output('Out'))
return [
min_node, max_node, scale_node, offset_node, node0, node1, node2,
node3
]
return [scale_node, offset_node, node0, node1, node2, node3]
def elementwise_mul(self, op, block):
axis = op.attr('axis')
......@@ -818,3 +758,11 @@ class PaddleOpMapper(object):
def im2sequence(self, op, block):
from .paddle_custom_layer.im2sequence import im2sequence
return im2sequence(op, block)
def yolo_box(self, op, block):
from .paddle_custom_layer.yolo_box import yolo_box
return yolo_box(op, block)
def multiclass_nms(self, op, block):
from .paddle_custom_layer.multiclass_nms import multiclass_nms
return multiclass_nms(op, block)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import onnx
import numpy as np
from onnx import onnx_pb, helper
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
import warnings
from onnx import helper, onnx_pb
def multiclass_nms(op, block):
"""
Convert the paddle multiclass_nms to onnx op.
This op is get the select boxes from origin boxes.
"""
inputs = dict()
outputs = dict()
attrs = dict()
for name in op.input_names:
inputs[name] = op.input(name)
for name in op.output_names:
outputs[name] = op.output(name)
for name in op.attr_names:
attrs[name] = op.attr(name)
result_name = outputs['Out'][0]
background = attrs['background_label']
normalized = attrs['normalized']
if normalized == False:
warnings.warn(
'The parameter normalized of multiclass_nms OP of Paddle is False, which has diff with ONNX. \
Please set normalized=True in multiclass_nms of Paddle')
#convert the paddle attribute to onnx tensor
name_score_threshold = [outputs['Out'][0] + "@score_threshold"]
name_iou_threshold = [outputs['Out'][0] + "@iou_threshold"]
name_keep_top_k = [outputs['Out'][0] + '@keep_top_k']
name_keep_top_k_2D = [outputs['Out'][0] + '@keep_top_k_1D']
node_score_threshold = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_score_threshold,
value=onnx.helper.make_tensor(
name=name_score_threshold[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[float(attrs['score_threshold'])]))
node_iou_threshold = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_iou_threshold,
value=onnx.helper.make_tensor(
name=name_iou_threshold[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[float(attrs['nms_threshold'])]))
node_keep_top_k = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_keep_top_k,
value=onnx.helper.make_tensor(
name=name_keep_top_k[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=(),
vals=[np.int64(attrs['keep_top_k'])]))
node_keep_top_k_2D = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_keep_top_k_2D,
value=onnx.helper.make_tensor(
name=name_keep_top_k_2D[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[1, 1],
vals=[np.int64(attrs['keep_top_k'])]))
# the paddle data format is x1,y1,x2,y2
kwargs = {'center_point_box': 0}
name_select_nms = [outputs['Out'][0] + "@select_index"]
node_select_nms= onnx.helper.make_node(
'NonMaxSuppression',
inputs=inputs['BBoxes'] + inputs['Scores'] + name_keep_top_k +\
name_iou_threshold + name_score_threshold,
outputs=name_select_nms)
# step 1 nodes select the nms class
node_list = [
node_score_threshold, node_iou_threshold, node_keep_top_k,
node_keep_top_k_2D, node_select_nms
]
# create some const value to use
name_const_value = [result_name+"@const_0",
result_name+"@const_1",\
result_name+"@const_2",\
result_name+"@const_-1"]
value_const_value = [0, 1, 2, -1]
for name, value in zip(name_const_value, value_const_value):
node = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=[name],
value=onnx.helper.make_tensor(
name=name + "@const",
data_type=onnx.TensorProto.INT64,
dims=[1],
vals=[value]))
node_list.append(node)
# In this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# and the same time, decode the select indices to 1 * D, gather the select_indices
outputs_gather_1 = [result_name + "@gather_1"]
node_gather_1 = onnx.helper.make_node(
'Gather',
inputs=name_select_nms + [result_name + "@const_1"],
outputs=outputs_gather_1,
axis=1)
node_list.append(node_gather_1)
outputs_squeeze_gather_1 = [result_name + "@sequeeze_gather_1"]
node_squeeze_gather_1 = onnx.helper.make_node(
'Squeeze',
inputs=outputs_gather_1,
outputs=outputs_squeeze_gather_1,
axes=[1])
node_list.append(node_squeeze_gather_1)
outputs_gather_2 = [result_name + "@gather_2"]
node_gather_2 = onnx.helper.make_node(
'Gather',
inputs=name_select_nms + [result_name + "@const_2"],
outputs=outputs_gather_2,
axis=1)
node_list.append(node_gather_2)
#slice the class is not 0
if background == 0:
outputs_nonzero = [result_name + "@nonzero"]
node_nonzero = onnx.helper.make_node(
'NonZero', inputs=outputs_squeeze_gather_1, outputs=outputs_nonzero)
node_list.append(node_nonzero)
else:
name_thresh = [result_name + "@thresh"]
node_thresh = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_thresh,
value=onnx.helper.make_tensor(
name=name_thresh[0] + "@const",
data_type=onnx.TensorProto.INT32,
dims=[1],
vals=[-1]))
node_list.append(node_thresh)
outputs_cast = [result_name + "@cast"]
node_cast = onnx.helper.make_node(
'Cast', inputs=outputs_squeeze_gather_1, outputs=outputs_cast, to=6)
node_list.append(node_cast)
outputs_greater = [result_name + "@greater"]
node_greater = onnx.helper.make_node(
'Greater',
inputs=outputs_cast + name_thresh,
outputs=outputs_greater)
node_list.append(node_greater)
outputs_nonzero = [result_name + "@nonzero"]
node_nonzero = onnx.helper.make_node(
'NonZero', inputs=outputs_greater, outputs=outputs_nonzero)
node_list.append(node_nonzero)
outputs_gather_1_nonzero = [result_name + "@gather_1_nonzero"]
node_gather_1_nonzero = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_1 + outputs_nonzero,
outputs=outputs_gather_1_nonzero,
axis=0)
node_list.append(node_gather_1_nonzero)
outputs_gather_2_nonzero = [result_name + "@gather_2_nonzero"]
node_gather_2_nonzero = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_2 + outputs_nonzero,
outputs=outputs_gather_2_nonzero,
axis=0)
node_list.append(node_gather_2_nonzero)
# reshape scores N * C * M to (N*C*M) * 1
outputs_reshape_scores_rank1 = [result_name + "@reshape_scores_rank1"]
node_reshape_scores_rank1 = onnx.helper.make_node(
"Reshape",
inputs=inputs['Scores'] + [result_name + "@const_-1"],
outputs=outputs_reshape_scores_rank1)
node_list.append(node_reshape_scores_rank1)
# get the shape of scores
outputs_shape_scores = [result_name + "@shape_scores"]
node_shape_scores = onnx.helper.make_node(
'Shape', inputs=inputs['Scores'], outputs=outputs_shape_scores)
node_list.append(node_shape_scores)
# gather the index: 2 shape of scores
outputs_gather_scores_dim1 = [result_name + "@gather_scores_dim1"]
node_gather_scores_dim1 = onnx.helper.make_node(
'Gather',
inputs=outputs_shape_scores + [result_name + "@const_2"],
outputs=outputs_gather_scores_dim1,
axis=0)
node_list.append(node_gather_scores_dim1)
# mul class * M
outputs_mul_classnum_boxnum = [result_name + "@mul_classnum_boxnum"]
node_mul_classnum_boxnum = onnx.helper.make_node(
'Mul',
inputs=outputs_gather_1_nonzero + outputs_gather_scores_dim1,
outputs=outputs_mul_classnum_boxnum)
node_list.append(node_mul_classnum_boxnum)
# add class * M * index
outputs_add_class_M_index = [result_name + "@add_class_M_index"]
node_add_class_M_index = onnx.helper.make_node(
'Add',
inputs=outputs_mul_classnum_boxnum + outputs_gather_2_nonzero,
outputs=outputs_add_class_M_index)
node_list.append(node_add_class_M_index)
# Squeeze the indices to 1 dim
outputs_squeeze_select_index = [result_name + "@squeeze_select_index"]
node_squeeze_select_index = onnx.helper.make_node(
'Squeeze',
inputs=outputs_add_class_M_index,
outputs=outputs_squeeze_select_index,
axes=[0, 2])
node_list.append(node_squeeze_select_index)
# gather the data from flatten scores
outputs_gather_select_scores = [result_name + "@gather_select_scores"]
node_gather_select_scores = onnx.helper.make_node('Gather',
inputs=outputs_reshape_scores_rank1 + \
outputs_squeeze_select_index,
outputs=outputs_gather_select_scores,
axis=0)
node_list.append(node_gather_select_scores)
# get nums to input TopK
outputs_shape_select_num = [result_name + "@shape_select_num"]
node_shape_select_num = onnx.helper.make_node(
'Shape',
inputs=outputs_gather_select_scores,
outputs=outputs_shape_select_num)
node_list.append(node_shape_select_num)
outputs_gather_select_num = [result_name + "@gather_select_num"]
node_gather_select_num = onnx.helper.make_node(
'Gather',
inputs=outputs_shape_select_num + [result_name + "@const_0"],
outputs=outputs_gather_select_num,
axis=0)
node_list.append(node_gather_select_num)
outputs_unsqueeze_select_num = [result_name + "@unsqueeze_select_num"]
node_unsqueeze_select_num = onnx.helper.make_node(
'Unsqueeze',
inputs=outputs_gather_select_num,
outputs=outputs_unsqueeze_select_num,
axes=[0])
node_list.append(node_unsqueeze_select_num)
outputs_concat_topK_select_num = [result_name + "@conat_topK_select_num"]
node_conat_topK_select_num = onnx.helper.make_node(
'Concat',
inputs=outputs_unsqueeze_select_num + name_keep_top_k_2D,
outputs=outputs_concat_topK_select_num,
axis=0)
node_list.append(node_conat_topK_select_num)
outputs_cast_concat_topK_select_num = [
result_name + "@concat_topK_select_num"
]
node_outputs_cast_concat_topK_select_num = onnx.helper.make_node(
'Cast',
inputs=outputs_concat_topK_select_num,
outputs=outputs_cast_concat_topK_select_num,
to=6)
node_list.append(node_outputs_cast_concat_topK_select_num)
# get min(topK, num_select)
outputs_compare_topk_num_select = [result_name + "@compare_topk_num_select"]
node_compare_topk_num_select = onnx.helper.make_node(
'ReduceMin',
inputs=outputs_cast_concat_topK_select_num,
outputs=outputs_compare_topk_num_select,
keepdims=0)
node_list.append(node_compare_topk_num_select)
# unsqueeze the indices to 1D tensor
outputs_unsqueeze_topk_select_indices = [
result_name + "@unsqueeze_topk_select_indices"
]
node_unsqueeze_topk_select_indices = onnx.helper.make_node(
'Unsqueeze',
inputs=outputs_compare_topk_num_select,
outputs=outputs_unsqueeze_topk_select_indices,
axes=[0])
node_list.append(node_unsqueeze_topk_select_indices)
# cast the indices to INT64
outputs_cast_topk_indices = [result_name + "@cast_topk_indices"]
node_cast_topk_indices = onnx.helper.make_node(
'Cast',
inputs=outputs_unsqueeze_topk_select_indices,
outputs=outputs_cast_topk_indices,
to=7)
node_list.append(node_cast_topk_indices)
# select topk scores indices
outputs_topk_select_topk_indices = [result_name + "@topk_select_topk_values",\
result_name + "@topk_select_topk_indices"]
node_topk_select_topk_indices = onnx.helper.make_node(
'TopK',
inputs=outputs_gather_select_scores + outputs_cast_topk_indices,
outputs=outputs_topk_select_topk_indices)
node_list.append(node_topk_select_topk_indices)
# gather topk label, scores, boxes
outputs_gather_topk_scores = [result_name + "@gather_topk_scores"]
node_gather_topk_scores = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_select_scores +
[outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_scores,
axis=0)
node_list.append(node_gather_topk_scores)
outputs_gather_topk_class = [result_name + "@gather_topk_class"]
node_gather_topk_class = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_1_nonzero +
[outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_class,
axis=1)
node_list.append(node_gather_topk_class)
# gather the boxes need to gather the boxes id, then get boxes
outputs_gather_topk_boxes_id = [result_name + "@gather_topk_boxes_id"]
node_gather_topk_boxes_id = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_2_nonzero +
[outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_boxes_id,
axis=1)
node_list.append(node_gather_topk_boxes_id)
# squeeze the gather_topk_boxes_id to 1 dim
outputs_squeeze_topk_boxes_id = [result_name + "@squeeze_topk_boxes_id"]
node_squeeze_topk_boxes_id = onnx.helper.make_node(
'Squeeze',
inputs=outputs_gather_topk_boxes_id,
outputs=outputs_squeeze_topk_boxes_id,
axes=[0, 2])
node_list.append(node_squeeze_topk_boxes_id)
outputs_gather_select_boxes = [result_name + "@gather_select_boxes"]
node_gather_select_boxes = onnx.helper.make_node(
'Gather',
inputs=inputs['BBoxes'] + outputs_squeeze_topk_boxes_id,
outputs=outputs_gather_select_boxes,
axis=1)
node_list.append(node_gather_select_boxes)
# concat the final result
# before concat need to cast the class to float
outputs_cast_topk_class = [result_name + "@cast_topk_class"]
node_cast_topk_class = onnx.helper.make_node(
'Cast',
inputs=outputs_gather_topk_class,
outputs=outputs_cast_topk_class,
to=1)
node_list.append(node_cast_topk_class)
outputs_unsqueeze_topk_scores = [result_name + "@unsqueeze_topk_scores"]
node_unsqueeze_topk_scores = onnx.helper.make_node(
'Unsqueeze',
inputs=outputs_gather_topk_scores,
outputs=outputs_unsqueeze_topk_scores,
axes=[0, 2])
node_list.append(node_unsqueeze_topk_scores)
inputs_concat_final_results = outputs_cast_topk_class + outputs_unsqueeze_topk_scores +\
outputs_gather_select_boxes
outputs_sort_by_socre_results = [result_name + "@concat_topk_scores"]
node_sort_by_socre_results = onnx.helper.make_node(
'Concat',
inputs=inputs_concat_final_results,
outputs=outputs_sort_by_socre_results,
axis=2)
node_list.append(node_sort_by_socre_results)
# select topk classes indices
outputs_squeeze_cast_topk_class = [result_name + "@squeeze_cast_topk_class"]
node_squeeze_cast_topk_class = onnx.helper.make_node(
'Squeeze',
inputs=outputs_cast_topk_class,
outputs=outputs_squeeze_cast_topk_class,
axes=[0, 2])
node_list.append(node_squeeze_cast_topk_class)
outputs_neg_squeeze_cast_topk_class = [
result_name + "@neg_squeeze_cast_topk_class"
]
node_neg_squeeze_cast_topk_class = onnx.helper.make_node(
'Neg',
inputs=outputs_squeeze_cast_topk_class,
outputs=outputs_neg_squeeze_cast_topk_class)
node_list.append(node_neg_squeeze_cast_topk_class)
outputs_topk_select_classes_indices = [result_name + "@topk_select_topk_classes_scores",\
result_name + "@topk_select_topk_classes_indices"]
node_topk_select_topk_indices = onnx.helper.make_node(
'TopK',
inputs=outputs_neg_squeeze_cast_topk_class + outputs_cast_topk_indices,
outputs=outputs_topk_select_classes_indices)
node_list.append(node_topk_select_topk_indices)
outputs_concat_final_results = outputs['Out']
node_concat_final_results = onnx.helper.make_node(
'Gather',
inputs=outputs_sort_by_socre_results +
[outputs_topk_select_classes_indices[1]],
outputs=outputs_concat_final_results,
axis=1)
node_list.append(node_concat_final_results)
return node_list
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import onnx
import numpy as np
from onnx import onnx_pb, helper
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
import x2paddle
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
from onnx import helper, onnx_pb
from x2paddle.op_mapper.paddle2onnx.opset9.opset import OpSet9
from x2paddle.op_mapper.paddle2onnx.opset10.opset import OpSet10
from x2paddle.op_mapper.paddle2onnx.opset11.opset import OpSet11
class PaddleOpMapper(object):
def __init__(self):
self.support_opsets = [9, 10, 11]
self.default_opset = 10
self.name_counter = dict()
self.op_set = None
def convert(self, program, save_dir, opset_number=10):
self.op_set = self.create_opset(opset_number)
weight_nodes = self.op_set.convert_weights(program)
op_nodes = list()
input_nodes = list()
output_nodes = list()
unsupported_ops = set()
print("Translating PaddlePaddle to ONNX...\n")
for block in program.blocks:
for i, op in enumerate(block.ops):
sys.stdout.write("\rTotal:{}, Current:{} : {} ".format(
len(block.ops), i + 1, op.type))
sys.stdout.flush()
if not hasattr(self.op_set, op.type):
unsupported_ops.add(op.type)
continue
if len(unsupported_ops) > 0:
continue
node = getattr(self.op_set, op.type)(op, block)
if op.type == 'feed':
print(node.name)
input_nodes.append(node)
elif op.type == 'fetch':
output_nodes.append(node)
else:
if isinstance(node, list):
op_nodes = op_nodes + node
else:
op_nodes.append(node)
if len(unsupported_ops) > 0:
print("\nThere's {} ops are not supported yet".format(
len(unsupported_ops)))
for op in unsupported_ops:
print("=========== {} ===========".format(op))
return
graph = helper.make_graph(
nodes=weight_nodes + op_nodes,
name='onnx_model_from_paddle',
initializer=[],
inputs=input_nodes,
outputs=output_nodes)
opset_imports = [helper.make_opsetid("", opset_number)]
model = helper.make_model(
graph, producer_name='X2Paddle', opset_imports=opset_imports)
onnx.checker.check_model(model)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
with open(os.path.join(save_dir, 'x2paddle_model.onnx'), 'wb') as f:
f.write(model.SerializeToString())
print("\nTranslated model saved in {}".format(
os.path.join(save_dir, 'x2paddle_model.onnx')))
def create_opset(self, opset_number):
run_opset = self.default_opset
opset = ''
if opset_number in self.support_opsets:
run_opset = opset_number
else:
for support_opset_number in self.support_opsets:
if support_opset_number < opset_number:
run_opset = support_opset_number
else:
break
print(
'Now, onnx2paddle support convert onnx model opset_verison {},'
'opset_verison of your onnx model is {}, automatically treated as op_set: {}.'
.format(self.support_opsets, opset_number, run_opset))
opset = 'OpSet' + str(run_opset)
return eval(opset)()
......@@ -15,6 +15,10 @@
from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
from x2paddle import program
from x2paddle import gen_name
import traceback
import math
import inspect
import numpy
import sys
......@@ -35,7 +39,6 @@ class TFOpMapperNHWC(OpMapper):
directly_map_ops = {
'Relu': ['relu'],
'Relu6': ['relu6'],
'Shape': ['shape'],
'Abs': ['abs'],
'Sigmoid': ['sigmoid'],
'Exp': ['exp'],
......@@ -46,7 +49,9 @@ class TFOpMapperNHWC(OpMapper):
'Softplus': ['softplus'],
'LeakyRelu': ['leaky_relu', {
'alpha': 'alpha'
}]
}],
'Floor': ['floor'],
'Erf': ['erf']
}
elementwise_ops = {
'Add': 'elementwise_add',
......@@ -54,6 +59,9 @@ class TFOpMapperNHWC(OpMapper):
'RealDiv': 'elementwise_div',
'Sub': 'elementwise_sub',
'Maximum': 'elementwise_max',
'Minimum': 'elementwise_min',
'LessEqual': 'less_equal',
'GreaterEqual': 'greater_equal',
'Mul': 'elementwise_mul',
'FloorDiv': 'elementwise_floordiv'
}
......@@ -63,18 +71,25 @@ class TFOpMapperNHWC(OpMapper):
self.decoder = decoder
self.graph = decoder.tf_graph
self.weights = dict()
self.batch_node = None
self.omit_nodes = list()
self.used_custom_layers = dict()
program.clear()
not_placeholder = list()
for name in self.graph.input_nodes:
if self.graph.get_node(name).layer_type != "Placeholder":
if self.graph.get_node(
name).layer_type != "Placeholder" and self.graph.get_node(
name
).layer_type != "OneShotIterator" and self.graph.get_node(
name).layer_type != "IteratorV2":
not_placeholder.append(name)
for name in not_placeholder:
idx = self.graph.input_nodes.index(name)
del self.graph.input_nodes[idx]
program.inputs = self.graph.input_nodes
program.outputs = self.graph.output_nodes
unsupported_ops = set()
sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
for i, node_name in enumerate(self.graph.topo_sort):
......@@ -95,31 +110,23 @@ class TFOpMapperNHWC(OpMapper):
func = getattr(self, op)
try:
func(node)
except:
except Exception as e:
unsupported_ops.add(op)
print("\n{}\n".format(traceback.format_exc()))
else:
unsupported_ops.add(op)
if len(unsupported_ops) > 0:
print("========= {} OPs are not supported yet ===========".format(
print("\n========= {} OPs are not supported yet ===========".format(
len(unsupported_ops)))
for op in unsupported_ops:
print("========== {} ============".format(op))
sys.exit(-1)
sys.stderr.write("\nDone!\n")
def add_omit_nodes(self, in_node_name, out_node_name):
in_node = self.graph.get_node(in_node_name)
out_node = self.graph.get_node(out_node_name)
index = in_node.outputs.index(out_node_name)
del in_node.outputs[index]
index = out_node.inputs.index(in_node_name)
del out_node.inputs[index]
self.omit_nodes.append(in_node.layer_name)
def directly_map(self, node):
assert node.layer_type in self.directly_map_ops
op_info = self.directly_map_ops[node.layer_type]
input = self.graph.get_node(node.layer.input[0], copy=True)
input = self.graph.get_node(node.layer.input[0])
attr = dict()
for param in op_info[1:]:
tf_param_name = list(param.keys())[0]
......@@ -127,128 +134,35 @@ class TFOpMapperNHWC(OpMapper):
tf_param = node.get_attr(tf_param_name)
attr[pd_param_name] = tf_param
if len(input.out_shapes[0]) == 4 and op_info[0] != 'shape':
attr1 = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer(
'transpose', inputs=input, output=node, param_attr=attr1)
input = node
node.fluid_code.add_layer(
op_info[0], inputs=input, output=node, param_attr=attr)
input = node
attr2 = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer(
'transpose', inputs=input, output=node, param_attr=attr2)
else:
node.fluid_code.add_layer(
op_info[0], inputs=input, output=node, param_attr=attr)
program.add_layer(
kernel="fluid.layers.{}".format(op_info[0]),
inputs={"x": input.name},
outputs=[node.name],
**attr)
def elementwise_map(self, node):
assert node.layer_type in self.elementwise_ops
op_type = self.elementwise_ops[node.layer_type]
x = self.graph.get_node(node.layer.input[0], copy=True)
y = self.graph.get_node(node.layer.input[1], copy=True)
x_shape = x.out_shapes[0]
y_shape = y.out_shapes[0]
if len(x_shape) == 0:
x_shape = [1]
if len(y_shape) == 0:
y_shape = [1]
# incomplement broadcasting support for paddle
x_input = x
y_input = y
if len(x_shape) < len(y_shape):
unrevertable_ops = [
"elementwise_sub", "elementwise_div", "elementwise_floordiv",
"elementwise_mod", "elementwise_pow"
]
if op_type not in unrevertable_ops:
x_input = y
y_input = x
x_shape = y.out_shapes[0]
if len(x_shape) == 0:
x_shape = [1]
y_shape = x.out_shapes[0]
if len(y_shape) == 0:
y_shape = [1]
else:
raise Exception("Unexpected situation happend")
if len(x_shape) == 4 and len(y_shape) == 1:
inputs = {"x": x_input, "y": y_input}
node.fluid_code.add_layer(op_type, inputs=inputs, output=node)
return
is_sub_seq = True
for i in range(len(y_shape)):
index = -1 * i - 1
if y_shape[index] != x_shape[index]:
is_sub_seq = False
if not is_sub_seq:
x_expand_times = [1] * len(x_shape)
y_expand_times = [1] * len(y_shape)
x_need_expand = False
y_need_expand = False
for i in range(len(y_shape)):
index = -1 * i - 1
if y_shape[index] != x_shape[index]:
if y_shape[index] == 1:
y_expand_times[index] = x_shape[index]
y_need_expand = True
elif x_shape[index] == 1:
x_expand_times[index] = y_shape[index]
x_need_expand = True
else:
raise Exception("Unexpected situation happend")
if x_need_expand:
attr = {"expand_times": x_expand_times}
node.fluid_code.add_layer(
"expand", inputs=x_input, output="x_tmp", param_attr=attr)
x_input = "x_tmp"
if y_need_expand:
attr = {"expand_times": y_expand_times}
node.fluid_code.add_layer(
"expand", inputs=y_input, output="y_tmp", param_attr=attr)
y_input = "y_tmp"
if len(x_shape) == 4 and len(y_shape) == 4:
node.fluid_code.add_layer(
"transpose",
inputs=x_input,
output=x_input,
param_attr={'perm': [0, 3, 1, 2]})
node.fluid_code.add_layer(
"transpose",
inputs=y_input,
output=y_input,
param_attr={'perm': [0, 3, 1, 2]})
inputs = {"x": x_input, "y": y_input}
node.fluid_code.add_layer(
op_type, inputs=inputs, output=node, param_attr=None)
node.fluid_code.add_layer(
"transpose",
inputs=node,
output=node,
param_attr={'perm': [0, 2, 3, 1]})
else:
inputs = {"x": x_input, "y": y_input}
node.fluid_code.add_layer(
op_type, inputs=inputs, output=node, param_attr=None)
x = self.graph.get_node(node.layer.input[0])
y = self.graph.get_node(node.layer.input[1])
program.add_layer(
kernel="fluid.layers.{}".format(op_type),
inputs={"x": x.name,
"y": y.name},
outputs=[node.name])
def Placeholder(self, node):
shape = node.out_shapes[0]
assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
node.layer_name)
dtype = node.dtype
if shape[0] < 0:
self.batch_node = node
attr = {
'dtype': string(dtype),
'shape': shape,
'name': string(node.layer_name),
'append_batch_size': False
}
node.fluid_code.add_layer(
"data", inputs=None, output=node, param_attr=attr)
program.add_layer(
kernel="fluid.data",
inputs={},
outputs=[node.name],
dtype=string(dtype),
shape=shape,
name=string(node.name))
def Const(self, node):
shape = node.out_shapes[0]
......@@ -260,477 +174,475 @@ class TFOpMapperNHWC(OpMapper):
shape = [1]
initializer = "Constant({})".format(value)
self.weights[node.layer_name] = node.value
attr = {
'dtype': string(dtype),
'shape': shape,
'name': string(node.layer_name),
'default_initializer': initializer
}
node.fluid_code.add_layer(
"create_parameter", inputs=None, output=node, param_attr=attr)
program.parameters[node.name] = node.value
program.add_layer(
kernel="fluid.layers.create_parameter",
inputs={},
outputs=[node.name],
dtype=string(dtype),
shape=shape,
name=string(node.name),
default_initializer=initializer)
def Transpose(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
perm = self.graph.get_node(node.layer.input[1], copy=True)
input = self.graph.get_node(node.layer.input[0])
perm = self.graph.get_node(node.layer.input[1])
assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
del self.weights[perm.layer_name.replace('/', '_')]
perm.fluid_code.clear()
perm = perm.value.tolist()
attr = {'perm': perm}
node.fluid_code.add_layer(
"transpose", inputs=input, output=node, param_attr=attr)
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": input.name},
outputs=[node.name],
perm=perm)
def Fill(self, node):
dims = self.graph.get_node(node.layer.input[0], copy=True)
input_value = self.graph.get_node(node.layer.input[1], copy=True)
assert input_value.layer_type == "Const", "Value of fill OP should be Const"
input_value = input_value.value
input_dtype = string(input_value.dtype)
program.add_layer(
"fluid.layers.fill_constant",
inputs={},
outputs=[node.name],
shape=dims,
dtype=string(input_dtype),
value=input_value)
def DepthToSpace(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
block_size = node.get_attr("block_size")
data_format = node.get_attr("data_format").decode()
n, h, w, c = input.out_shapes[0]
input_name = input.name
if data_format == "NHWC":
transpose_name = gen_name("depth_to_space", "transpose")
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": input.name},
outputs=[transpose_name],
perm=[0, 3, 1, 2])
input_name = transpose_name
shape = [0, block_size * block_size, -1, h, w]
reshape_name = gen_name("depth_to_space", "reshape")
program.add_layer(
kernel="fluid.layers.reshape",
inputs={"x": input_name},
outputs=[reshape_name],
shape=shape)
transpose_name = gen_name("depth_to_space", "transpose")
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": reshape_name},
outputs=[transpose_name],
perm=[0, 2, 1, 3, 4])
reshape_name = gen_name("depth_to_space", "reshape")
program.add_layer(
kernel="fluid.layers.reshape",
inputs={"x": transpose_name},
outputs=[reshape_name],
shape=[0, c, h, w])
program.add_layer(
kernel="fluid.layers.pixed_shuffle",
inputs={"input": reshape_name},
outputs=[node.name],
upscale_factor=block_size)
if data_format == "NHWC":
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": node.name},
outputs=[node.name],
perm=[0, 2, 3, 1])
def MaxPool(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
in_shape = input.out_shapes[0]
if in_shape.count(-1) > 2:
in_shape = self.decoder.infer_tensor(input).shape
k_size = node.get_attr("ksize")
strides = node.get_attr("strides")
data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW"
if not channel_first:
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer(
"transpose", inputs=input, output=node, param_attr=attr)
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
input_name = input.name
if data_format == "NHWC":
transpose_name = gen_name("max_pool", "transpose")
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": input.name},
outputs=[transpose_name],
perm=[0, 3, 1, 2])
strides = [strides[i] for i in [0, 3, 1, 2]]
k_size = [k_size[i] for i in [0, 3, 1, 2]]
input = node
attr = {
"pool_size": k_size[2:4],
"pool_type": string("max"),
"pool_stride": strides[2:4],
"pool_padding": string(pad_mode)
}
node.fluid_code.add_layer(
"pool2d", inputs=input, output=node, param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer(
"transpose", inputs=node, output=node, param_attr=attr)
input_name = transpose_name
program.add_layer(
kernel="fluid.layers.pool2d",
inputs={"input": input_name},
outputs=[node.name],
pool_size=k_size[2:4],
pool_type=string("max"),
pool_stride=strides[2:4],
pool_padding=string(pad_mode))
if data_format == "NHWC":
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": node.name},
outputs=[node.name],
perm=[0, 2, 3, 1])
def Conv2D(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
kernel = self.graph.get_node(node.layer.input[1], copy=True)
self.add_omit_nodes(kernel.layer_name, node.layer_name)
input = self.graph.get_node(node.layer.input[0])
kernel = self.graph.get_node(node.layer.input[1])
in_shape = input.out_shapes[0]
if in_shape.count(-1) > 2:
in_shape = self.decoder.infer_tensor(input).shape
k_size = kernel.out_shapes[0]
if k_size.count(-1) > 2:
k_size = self.decoder.infer_tensor(kernel).shape
strides = node.get_attr("strides")
dilations = node.get_attr("dilations")
data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW"
if kernel.layer_type == 'Const':
kernel_value = kernel.value
kernel_weight_name = kernel.layer_name.replace('/', '_')
else:
kernel_value = self.decoder.infer_tensor(kernel)
self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
kernel_value, (3, 2, 0, 1))
if kernel.layer_type == 'Split':
kernel_weight_name = "{}_{}_kernel".format(node.layer_name,
kernel.layer_name)
else:
kernel_weight_name = kernel.layer_name.replace('/', '_')
program.parameters[kernel_weight_name] = numpy.transpose(kernel_value,
(3, 2, 0, 1))
if not channel_first:
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
input_name = input.name
if data_format == "NHWC":
strides = [strides[i] for i in [0, 3, 1, 2]]
dilations = [dilations[i] for i in [0, 3, 1, 2]]
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer(
"transpose", inputs=input, output=node, param_attr=attr)
input = node
attr = {
"bias_attr": False,
"param_attr": string(kernel.layer_name),
"num_filters": k_size[3],
"filter_size": k_size[0:2],
"stride": strides[2:4],
"dilation": dilations[2:4],
"padding": string(pad_mode)
}
if hasattr(node, 'dilation') and attr['dilation'] == [1, 1]:
if len(node.dilation) == 1:
attr['dilation'] = [1, node.dilation[0]]
node.fluid_code.add_layer(
"conv2d", inputs=input, output=node, param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer(
"transpose", inputs=node, output=node, param_attr=attr)
transpose_name = gen_name("conv2d", "transpose")
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": input.name},
outputs=[transpose_name],
perm=[0, 3, 1, 2])
input_name = transpose_name
program.add_layer(
kernel="fluid.layers.conv2d",
inputs={"input": input_name},
outputs=[node.name],
bias_attr=False,
param_attr=string(kernel_weight_name),
num_filters=k_size[3],
filter_size=k_size[0:2],
stride=strides[2:4],
dilation=dilations[2:4],
padding=string(pad_mode))
if data_format == "NHWC":
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": node.name},
outputs=[node.name],
perm=[0, 2, 3, 1])
def BiasAdd(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
bias = self.graph.get_node(node.layer.input[1], copy=True)
inputs = {"x": input, "y": bias}
node.fluid_code.add_layer(
"elementwise_add", inputs=inputs, output=node, param_attr=None)
input = self.graph.get_node(node.layer.input[0])
bias = self.graph.get_node(node.layer.input[1])
program.add_layer(
kernel="fluid.layers.elementwise_add",
inputs={"x": input.name,
"y": bias.name},
outputs=[node.name])
def FusedBatchNorm(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
gamma = self.graph.get_node(node.layer.input[1], copy=True)
beta = self.graph.get_node(node.layer.input[2], copy=True)
moving_mean = self.graph.get_node(node.layer.input[3], copy=True)
moving_var = self.graph.get_node(node.layer.input[4], copy=True)
input = self.graph.get_node(node.layer.input[0])
gamma = self.graph.get_node(node.layer.input[1])
beta = self.graph.get_node(node.layer.input[2])
moving_mean = self.graph.get_node(node.layer.input[3])
moving_var = self.graph.get_node(node.layer.input[4])
data_format = node.get_attr("data_format").decode()
channel_first = data_format == "NCHW"
assert gamma.layer_type == "Const"
assert beta.layer_type == "Const"
assert moving_mean.layer_type == "Const"
assert moving_var.layer_type == "Const"
self.add_omit_nodes(gamma.layer_name, node.layer_name)
self.add_omit_nodes(beta.layer_name, node.layer_name)
self.add_omit_nodes(moving_mean.layer_name, node.layer_name)
self.add_omit_nodes(moving_var.layer_name, node.layer_name)
if not channel_first:
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer(
"transpose", inputs=input, output=node, param_attr=attr)
input = node
attr = {
"epsilon": node.get_attr("epsilon"),
"param_attr": string(gamma.layer_name),
"bias_attr": string(beta.layer_name),
"moving_mean_name": string(moving_mean.layer_name),
"moving_variance_name": string(moving_var.layer_name),
"is_test": True
}
node.fluid_code.add_layer(
"batch_norm", inputs=input, output=node, param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer(
"transpose", inputs=node, output=node, param_attr=attr)
input_name = input.name
if data_format == "NHWC":
transpose_name = gen_name("batch_norm", "transpose")
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": input.name},
outputs=[transpose_name],
perm=[0, 3, 1, 2])
input_name = transpose_name
program.add_layer(
kernel="fluid.layers.batch_norm",
inputs={"input": input_name},
outputs=[node.name],
epsilon=node.get_attr("epsilon"),
param_attr=string(gamma.name),
bias_attr=string(beta.name),
moving_mean_name=string(moving_mean.name),
moving_variance_name=string(moving_var.name),
is_test=True)
if data_format == "NHWC":
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": node.name},
outputs=[node.name],
perm=[0, 2, 3, 1])
def Mean(self, node):
input = self.graph.get_node(node.layer.input[0])
reduce_idx = self.graph.get_node(node.layer.input[1])
assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
dims = reduce_idx.value.tolist()
keep_dims = node.get_attr("keep_dims")
program.add_layer(
kernel="fluid.layers.reduce_mean",
inputs={"input": input.name},
outputs=[node.name],
dim=dims,
keep_dim=keep_dims)
def Reshape(self, node):
input = self.graph.get_node(node.layer.input[0])
param = self.graph.get_node(node.layer.input[1])
if param.layer_type == "Const":
shape = param.value.tolist()
program.add_layer(
kernel="fluid.layers.reshape",
inputs={"x": input.name},
outputs=[node.name],
shape=shape)
else:
program.add_layer(
kernel="fluid.layers.reshape",
inputs={"x": input.name,
"shape": param.name},
outputs=[node.name])
if param.layer_type != "Const":
out_shape = numpy.array(node.out_shapes[0])
if (out_shape > 0).any():
out_shape[out_shape < 0] = 0
program.add_layer(
kernel="fluid.layers.reshape",
inputs={"x": node.name},
outputs=[node.name],
shape=out_shape.tolist())
def Pad(self, node):
input = self.graph.get_node(node.layer.input[0])
paddings = self.graph.get_node(node.layer.input[1])
assert paddings.layer_type == "Const", "Padding should be Const"
paddings = paddings.value.flatten().tolist()
if len(input.out_shapes[0]) == 4:
if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
new_padding = paddings[2:6]
transpose_name = gen_name("pad", "transpose")
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": input.name},
outputs=[transpose_name],
perm=[0, 3, 1, 2])
program.add_layer(
kernel="fluid.layers.pad2d",
inputs={"input": transpose_name},
outputs=[node.name],
paddings=new_padding)
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": node.name},
outputs=[node.name],
perm=[0, 2, 3, 1])
return
program.add_layer(
kernel="fluid.layers.pad",
inputs={"input": input.name},
outputs=[node.name],
paddings=paddings)
def Squeeze(self, node):
input = self.graph.get_node(node.layer.input[0])
squeeze_dims = node.get_attr('squeeze_dims')
program.add_layer(
kernel="fluid.layers.squeeze",
inputs={"input": input.name},
outputs=[node.name],
axes=squeeze_dims)
def Softmax(self, node):
input = self.graph.get_node(node.layer.input[0])
axis = node.get_attr("axis")
program.add_layer(
kernel="fluid.layers.softmax",
inputs={"input": input.name},
outputs=[node.name],
axis=axis)
def Shape(self, node):
input = self.graph.get_node(node.layer.input[0])
program.add_layer(
kernel="fluid.layers.shape",
inputs={"input": input.name},
outputs=[node.name])
def ArgMax(self, node):
input = self.graph.get_node(node.layer.input[0])
axis = self.graph.get_node(node.layer.input[1])
assert axis.layer_type == "Const", "ArgMax only support Const parameter"
axis = axis.value
program.add_layer(
kernel="fluid.layers.argmax",
inputs={"x": input.name},
outputs=[node.name],
axis=axis)
def MatMul(self, node):
x = self.graph.get_node(node.layer.input[0])
y = self.graph.get_node(node.layer.input[1])
transpose_a = node.get_attr('transpose_a')
transpose_b = node.get_attr('transpose_b')
if transpose_a is None:
transpose_a = node.get_attr('adj_x')
if transpose_b is None:
transpose_b = node.get_attr('adj_y')
program.add_layer(
kernel="fluid.layers.matmul",
inputs={"x": x.name,
"y": y.name},
outputs=[node.name],
transpose_x=transpose_a,
transpose_y=transpose_b)
def DepthwiseConv2dNative(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
kernel = self.graph.get_node(node.layer.input[1], copy=True)
input = self.graph.get_node(node.layer.input[0])
kernel = self.graph.get_node(node.layer.input[1])
assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
self.add_omit_nodes(kernel.layer_name, node.layer_name)
in_shape = input.out_shapes[0]
if in_shape.count(-1) > 2:
in_shape = self.decoder.infer_tensor(input).shape
k_size = kernel.out_shapes[0]
if k_size.count(-1) > 2:
k_size = self.decoder.infer_tensor(kernel).shape
strides = node.get_attr("strides")
dilations = node.get_attr("dilations")
data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW"
self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
kernel.value, (2, 3, 0, 1))
program.parameters[kernel.layer_name.replace(
'/', '_')] = numpy.transpose(kernel.value, (2, 3, 0, 1))
if not channel_first:
input_name = input.name
if data_format == "NHWC":
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
strides = [strides[i] for i in [0, 3, 1, 2]]
dilations = [dilations[i] for i in [0, 3, 1, 2]]
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer(
"transpose", inputs=input, output=node, param_attr=attr)
input = node
attr = {
"bias_attr": False,
"param_attr": string(kernel.layer_name),
"num_filters": in_shape[1],
"filter_size": k_size[0:2],
"stride": strides[2:4],
"dilation": dilations[2:4],
"groups": k_size[3] * in_shape[1],
"use_cudnn": False,
"padding": string(pad_mode)
}
node.fluid_code.add_layer(
"conv2d", inputs=input, output=node, param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer(
"transpose", inputs=node, output=node, param_attr=attr)
def Reshape(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
param = self.graph.get_node(node.layer.input[1], copy=True)
is_variable = False
if param.layer_type == "Const":
attr = {"shape": param.value.tolist()}
self.add_omit_nodes(param.layer_name, node.layer_name)
else:
# Here is a trick method to solove tensor parameter in tensorflow
shape = self.decoder.infer_shape_tensor(param, node.out_shapes[0])
if shape.count(-1) <= 1:
attr = {"shape": shape}
self.add_omit_nodes(param.layer_name, node.layer_name)
else:
assert len(param.out_shapes[
0]) == 1, "Unexpected situation of shape parameter"
attr = {"shape": [-1]}
node.fluid_code.add_layer(
"reshape",
inputs=param,
output="shape_param",
param_attr=attr)
attr = {"num_or_sections": param.out_shapes[0][0], "dim": 0}
node.fluid_code.add_layer(
"split", inputs="shape_param", output=node, param_attr=attr)
new_param = "["
for i in range(param.out_shapes[0][0]):
new_param += (node.layer_name + "[{}]".format(i) + ", ")
new_param = new_param.strip(", ") + "]"
attr = {"shape": new_param}
is_variable = True
# to change [192, -1]->[-1, 192], allways put -1 in the first dimension
# optimization for Paddle-Lite
in_shape = input.out_shapes[0]
if not is_variable and in_shape.count(-1) < 1:
total_size = 1
for i in range(len(in_shape)):
total_size *= in_shape[i]
for i in range(len(attr["shape"])):
if attr["shape"][i] == 0:
attr["shape"][i] = in_shape[i]
if attr["shape"][i] != -1:
total_size /= attr["shape"][i]
if attr["shape"].count(-1) > 0:
index = attr["shape"].index(-1)
attr["shape"][index] = int(total_size)
attr["shape"][0] = -1
node.fluid_code.add_layer(
"reshape", inputs=input, output=node, param_attr=attr)
transpose_name = gen_name('depthwise_conv2d', 'transpose')
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": input.name},
outputs=[transpose_name],
perm=[0, 3, 1, 2])
input_name = transpose_name
program.add_layer(
kernel="fluid.layers.conv2d",
inputs={"input": input_name},
outputs=[node.name],
num_filters=in_shape[1],
filter_size=k_size[0:2],
stride=strides[2:4],
dilation=dilations[2:4],
groups=k_size[3] * in_shape[1],
padding=string(pad_mode),
param_attr=string(kernel.layer_name),
bias_attr=False)
if data_format == "NHWC":
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": node.name},
outputs=[node.name],
perm=[0, 2, 3, 1])
def AvgPool(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
in_shape = input.out_shapes[0]
if in_shape.count(-1) > 2:
in_shape = self.decoder.infer_tensor(input).shape
k_size = node.get_attr("ksize")
strides = node.get_attr("strides")
data_format = node.get_attr("data_format").decode()
pad_mode = node.get_attr("padding").decode()
channel_first = data_format == "NCHW"
if not channel_first:
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
input_name = input.name
if data_format == "NHWC":
transpose_name = gen_name("avg_pool", "transpose")
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": input.name},
outputs=[transpose_name],
perm=[0, 3, 1, 2])
strides = [strides[i] for i in [0, 3, 1, 2]]
k_size = [k_size[i] for i in [0, 3, 1, 2]]
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer(
"transpose", inputs=input, output=node, param_attr=attr)
input = node
attr = {
"pool_size": k_size[2:4],
"pool_type": string("avg"),
"pool_stride": strides[2:4],
"pool_padding": string(pad_mode)
}
node.fluid_code.add_layer(
"pool2d", inputs=input, output=node, param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer(
"transpose", inputs=node, output=node, param_attr=attr)
def SplitV(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
num_sections = self.graph.get_node(node.layer.input[1], copy=True)
dim = self.graph.get_node(node.layer.input[2], copy=True)
assert num_sections.layer_type == "Const"
assert dim.layer_type == "Const"
self.add_omit_nodes(num_sections.layer_name, node.layer_name)
self.add_omit_nodes(dim.layer_name, node.layer_name)
dim = dim.value
attr = {
"num_or_sections": num_sections.value.tolist(),
"dim": dim.value
}
node.fluid_code.add_layer(
"split", inputs=input, output=node, param_attr=attr)
def ConcatV2(self, node):
inputs = [
self.graph.get_node(
name, copy=True) for name in node.layer.input[:-1]
]
axis = self.graph.get_node(node.layer.input[-1], copy=True)
assert axis.layer_type == "Const"
self.add_omit_nodes(axis.layer_name, node.layer_name)
axis = axis.value
if axis < 0:
axis += len(inputs[0].out_shapes[0])
attr = {"axis": axis}
node.fluid_code.add_layer(
"concat", inputs=inputs, output=node, param_attr=attr)
def Tile(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
expand_times = self.graph.get_node(node.layer.input[1], copy=True)
self.add_omit_nodes(expand_times.layer_name, node.layer_name)
if expand_times.layer_type == "Const":
expand_times = expand_times.value.tolist()
else:
expand_times = self.decoder.infer_shape_tensor(expand_times)
for i in range(len(expand_times)):
if expand_times[i] < 0:
expand_times[i] = 1
attr = {"expand_times": expand_times}
node.fluid_code.add_layer(
"expand", inputs=input, output=node, param_attr=attr)
input_name = transpose_name
program.add_layer(
kernel="fluid.layers.pool2d",
inputs={"input": input_name},
outputs=[node.name],
pool_size=k_size[2:4],
pool_type=string("avg"),
pool_stride=strides[2:4],
pool_padding=string(pad_mode))
if data_format == "NHWC":
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": node.name},
outputs=[node.name],
perm=[0, 2, 3, 1])
def Pack(self, node):
inputs = [
self.graph.get_node(
name, copy=True) for name in node.layer.input
]
inputs = [self.graph.get_node(name) for name in node.layer.input]
axis = node.get_attr("axis")
attr = {"axis": axis}
node.fluid_code.add_layer(
"stack", inputs=inputs, output=node, param_attr=attr)
program.add_layer(
kernel="fluid.layers.stack",
inputs={"x": [i.name for i in inputs]},
outputs=[node.name],
axis=axis)
def Pad(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
paddings = self.graph.get_node(node.layer.input[1], copy=True)
assert paddings.layer_type == "Const", "Padding should be Const"
self.add_omit_nodes(paddings.layer_name, node.layer_name)
paddings = paddings.value.flatten().tolist()
data_format = input.tf_data_format
if len(input.out_shapes[0]) == 4:
new_padding = None
if input.tf_data_format == "NHWC":
if paddings[0] + paddings[1] + paddings[6] + paddings[7] == 0:
new_padding = paddings[2:6]
else:
if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0:
new_padding = paddings[4:]
if new_padding is not None:
if input.tf_data_format == "NHWC":
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer(
"transpose", inputs=input, output=node, param_attr=attr)
input = node
attr = {"paddings": new_padding}
node.fluid_code.add_layer(
"pad2d", inputs=input, output=node, param_attr=attr)
if input.tf_data_format == "NHWC":
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer(
"transpose", inputs=node, output=node, param_attr=attr)
return
attr = {"paddings": paddings}
node.fluid_code.add_layer(
"pad", inputs=input, output=node, param_attr=attr)
def Range(self, node):
start = self.graph.get_node(node.layer.input[0], copy=True)
limit = self.graph.get_node(node.layer.input[1], copy=True)
delta = self.graph.get_node(node.layer.input[2], copy=True)
self.add_omit_nodes(start.layer_name, node.layer_name)
self.add_omit_nodes(limit.layer_name, node.layer_name)
self.add_omit_nodes(delta.layer_name, node.layer_name)
if start.layer_type == "Const":
start = start.value
else:
start = self.decoder.infer_tensor(start)
if limit.layer_type == "Const":
limit = limit.value
else:
limit = self.decoder.infer_tensor(limit)
if delta.layer_type == "Const":
delta = delta.value
else:
delta = self.decoder.infer_tensor(delta)
dtype = node.dtype
inputs = {
"start": start,
"end": limit,
"step": delta,
}
attr = {"dtype": string(node.dtype)}
node.fluid_code.add_layer(
"range", inputs=inputs, output=node, param_attr=attr)
def Mean(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
dims = reduce_idx.value.tolist()
keep_dims = node.get_attr("keep_dims")
attr = {"dim": dims, "keep_dim": keep_dims}
node.fluid_code.add_layer(
"reduce_mean", inputs=input, output=node, param_attr=attr)
def MatMul(self, node):
x = self.graph.get_node(node.layer.input[0], copy=True)
y = self.graph.get_node(node.layer.input[1], copy=True)
transpose_a = node.get_attr('transpose_a')
transpose_b = node.get_attr('transpose_b')
inputs = {"x": x, "y": y}
# fix paddle shape infer problem
# should be removed after paddle 1.6
if x.out_shapes[0][-1] < 0 and y.out_shapes[0][0] > 0:
shape = x.out_shapes[0]
shape[-1] = y.out_shapes[0][0]
attr = {"shape": shape}
node.fluid_code.add_layer(
"reshape", inputs=x, output=x, param_attr=attr)
attr = {"transpose_x": transpose_a, "transpose_y": transpose_b}
node.fluid_code.add_layer(
"matmul", inputs=inputs, output=node, param_attr=attr)
def ArgMax(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
axis = self.graph.get_node(node.layer.input[1], copy=True)
assert axis.layer_type == "Const", "ArgMax only support Const parameter"
self.add_omit_nodes(axis.layer_name, node.layer_name)
def ConcatV2(self, node):
inputs = [self.graph.get_node(name) for name in node.layer.input[:-1]]
axis = self.graph.get_node(node.layer.input[-1])
assert axis.layer_type == "Const", "axis for ConcatV2 must be type Const"
axis = axis.value
attr = {"axis": axis}
node.fluid_code.add_layer(
"argmax", inputs=input, output=node, param_attr=attr)
if axis < 0:
axis += len(inputs[0].out_shapes[0])
program.add_layer(
kernel="fluid.layers.concat",
inputs={"input": [i.name for i in inputs]},
outputs=[node.name],
axis=axis)
def StridedSlice(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
begin = self.graph.get_node(node.layer.input[1], copy=True)
end = self.graph.get_node(node.layer.input[2], copy=True)
strides = self.graph.get_node(node.layer.input[3], copy=True)
input = self.graph.get_node(node.layer.input[0])
begin = self.graph.get_node(node.layer.input[1])
end = self.graph.get_node(node.layer.input[2])
strides = self.graph.get_node(node.layer.input[3])
assert begin.layer_type == "Const"
assert end.layer_type == "Const"
assert strides.layer_type == "Const"
self.add_omit_nodes(begin.layer_name, node.layer_name)
self.add_omit_nodes(end.layer_name, node.layer_name)
self.add_omit_nodes(strides.layer_name, node.layer_name)
strides = strides.value.tolist()
assert len(set(strides)) == 1 and strides[
0] == 1, "Only support strides be 1 in StridedSlice OP"
......@@ -779,65 +691,228 @@ class TFOpMapperNHWC(OpMapper):
else:
new_end.append(end[i])
attr = {
"axes": [i for i in range(len(new_begin))],
"starts": new_begin,
"ends": new_end
}
node.fluid_code.add_layer(
"slice", inputs=input, output=node, param_attr=attr)
program.add_layer(
kernel="fluid.layers.slice",
inputs={"input": input.name},
outputs=[node.name],
axes=[i for i in range(len(new_begin))],
starts=new_begin,
ends=new_end)
if len(new_axes) > 0:
attr = {"axes": new_axes}
node.fluid_code.add_layer(
"unsqueeze", inputs=node, output=node, param_attr=attr)
program.add_layer(
kernel="fluid.layers.unsqueeze",
inputs={"x": node.name},
outputs=[node.name],
axes=new_axes)
if len(shrink_axes) > 0:
if len(input.out_shapes[0]) + len(new_axes) <= 1:
pass
else:
attr = {"axes": shrink_axes}
node.fluid_code.add_layer(
"squeeze", inputs=node, output=node, param_attr=attr)
program.add_layer(
kernel="fluid.layers.unsqueeze",
inputs={"x": node.name},
outputs=[node.name],
axes=new_axes)
def Split(self, node):
dim = self.graph.get_node(node.layer.input[0])
input = self.graph.get_node(node.layer.input[1])
assert dim.layer_type == "Const"
num_split = node.get_attr('num_split')
dim = dim.value
program.add_layer(
kernel="fluid.layers.split",
inputs={"input": input.name},
outputs=[
"{}_p{}".format(node.layer_name, i) for i in range(num_split)
],
num_or_sections=num_split,
dim=dim)
def Slice(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
begin = self.graph.get_node(node.layer.input[1], copy=True)
size = self.graph.get_node(node.layer.input[2], copy=True)
self.add_omit_nodes(begin.layer_name, node.layer_name)
self.add_omit_nodes(size.layer_name, node.layer_name)
input = self.graph.get_node(node.layer.input[0])
begin = self.graph.get_node(node.layer.input[1])
size = self.graph.get_node(node.layer.input[2])
inputs = {"x": input.name}
attrs = {}
if begin.layer_type == "Const":
begin = begin.value.tolist()
attrs['offsets'] = begin
else:
begin = self.decoder.infer_tensor(begin).tolist()
if size.layer_type == "const":
shape = begin.out_shapes[0]
reshape_name = gen_name("slice", "reshape")
program.add_layer(
kernel="fluid.layers.reshape",
inputs={"x": begin.name},
outputs=[reshape_name],
shape=shape)
inputs['offsets'] = reshape_name
if size.layer_type == "Const":
size = size.value.tolist()
attrs['shape'] = size
else:
size = self.decoder.infer_tensor(size).tolist()
shape = size.out_shapes[0]
reshape_name = gen_name("slice", "reshape")
program.add_layer(
kernel="fluid.layers.reshape",
inputs={"x": size.name},
outputs=[reshape_name],
shape=shape)
inputs['shape'] = reshape_name
program.add_layer(
kernel="fluid.layers.crop_tensor",
inputs=inputs,
outputs=[node.name],
**attrs)
for i in range(len(size)):
if size[i] < 0:
size[i] = 99999999
else:
size[i] = size[i] + begin[i]
def ResizeNearestNeighbor(self, node):
input = self.graph.get_node(node.layer.input[0])
resize_shape = self.graph.get_node(node.layer.input[1])
data_format = "NHWC"
inputs = {"input": input.name}
attrs = {"align_corners": node.get_attr("align_corners")}
if resize_shape.layer_type == "Const":
resize_shape = resize_shape.value.tolist()
attrs["out_shape"] = resize_shape
else:
shape = resize_shape.out_shapes[0]
reshape_name = gen_name("resize_nearest", "reshape")
program.add_layer(
kernel="fluid.layers.reshape",
inputs={"x": resize_shape.name},
outputs=[reshape_name],
shape=shape)
inputs["out_shape"] = reshape_name
if data_format == "NHWC":
transpose_name = gen_name("resize_nearest", "reshape")
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": input.name},
outputs=[transpose_name],
perm=[0, 3, 1, 2])
inputs["input"] = transpose_name
program.add_layer(
kernel="fluid.layers.resize_nearest",
inputs=inputs,
outputs=[node.name],
**attrs)
if data_format == "NHWC":
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": node.name},
outputs=[node.name],
perm=[0, 2, 3, 1])
def ResizeBilinear(self, node):
input = self.graph.get_node(node.layer.input[0])
resize_shape = self.graph.get_node(node.layer.input[1])
data_format = "NHWC"
inputs = {"input": input.name}
attrs = {"align_corners": node.get_attr("align_corners")}
if resize_shape.layer_type == "Const":
resize_shape = resize_shape.value.tolist()
attrs["out_shape"] = resize_shape
else:
shape = resize_shape.out_shapes[0]
reshape_name = gen_name("resize_bilinear", "reshape")
program.add_layer(
kernel="fluid.layers.reshape",
inputs={"x": resize_shape.name},
outputs=[reshape_name],
shape=shape)
inputs["out_shape"] = reshape_name
if data_format == "NHWC":
transpose_name = gen_name("resize_bilinear", "reshape")
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": input.name},
outputs=[transpose_name],
perm=[0, 3, 1, 2])
inputs["input"] = transpose_name
program.add_layer(
kernel="fluid.layers.resize_bilinear",
inputs=inputs,
outputs=[node.name],
**attrs)
if data_format == "NHWC":
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": node.name},
outputs=[node.name],
perm=[0, 2, 3, 1])
attr = {
"axes": [i for i in range(len(size))],
"starts": begin,
"ends": size
}
def Cast(self, node):
input = self.graph.get_node(node.layer.input[0])
dtype = node.dtype
program.add_layer(
kernel="fluid.layers.cast",
inputs={"x": input.name},
outputs=[node.name],
dtype=string(dtype))
def Sum(self, node):
input = self.graph.get_node(node.layer.input[0])
reduce_idx = self.graph.get_node(node.layer.input[1])
assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
keep_dims = node.get_attr("keep_dims")
dim = reduce_idx.value.tolist()
node.fluid_code.add_layer(
"slice", inputs=input, output=node, param_attr=attr)
program.add_layer(
kernel="fluid.layers.reduce_sum",
inputs={"input": input.name},
outputs=[node.name],
dim=dim,
keep_dim=keep_dims)
def Max(self, node):
input = self.graph.get_node(node.layer.input[0])
reduce_idx = self.graph.get_node(node.layer.input[1])
assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
keep_dims = node.get_attr("keep_dims")
dim = reduce_idx.value.tolist()
program.add_layer(
kernel="fluid.layers.reduce_max",
inputs={"input": input.name},
outputs=[node.name],
dim=dim,
keep_dim=keep_dims)
def RandomUniform(self, node):
shape = self.graph.get_node(node.layer.input[0], copy=True)
if shape.layer_type == "Const":
shape = shape.value.tolist()
program.add_layer(
kernel="fluid.layers.uniform_random",
inputs={},
outputs=[node.name],
shape=shape,
min=0.0,
max=0.9999)
else:
program.add_layer(
kernel="fluid.layers.uniform_random",
inputs={'shape': shape.name},
outputs=[node.name],
min=0.0,
max=0.9999)
def Conv2DBackpropInput(self, node):
out_shape = self.graph.get_node(node.layer.input[0], copy=True)
kernel = self.graph.get_node(node.layer.input[1], copy=True)
input = self.graph.get_node(node.layer.input[2], copy=True)
out_shape = self.graph.get_node(node.layer.input[0])
kernel = self.graph.get_node(node.layer.input[1])
input = self.graph.get_node(node.layer.input[2])
assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
self.add_omit_nodes(kernel.layer_name, node.layer_name)
self.add_omit_nodes(out_shape.layer_name, node.layer_name)
if out_shape.layer_type == "Const":
out_shape = out_shape.value.tolist()
else:
......@@ -855,201 +930,39 @@ class TFOpMapperNHWC(OpMapper):
strides = node.get_attr("strides")
dilations = node.get_attr("dilations")
data_format = node.get_attr("data_format").decode()
channel_first = data_format == "NCHW"
self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
kernel.value, (3, 2, 0, 1))
if not channel_first:
program.parameters[kernel.layer_name.replace(
'/', '_')] = numpy.transpose(kernel.value, (3, 2, 0, 1))
input_name = input.name
if data_format == "NHWC":
in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
strides = [strides[i] for i in [0, 3, 1, 2]]
dilations = [dilations[i] for i in [0, 3, 1, 2]]
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer(
"transpose", inputs=input, output=node, param_attr=attr)
input = node
else:
self.data_format_propagation(node)
attr = {
"bias_attr": False,
"param_attr": string(kernel.layer_name),
"num_filters": k_size[2],
"filter_size": k_size[0:2],
"stride": strides[2:4],
"dilation": dilations[2:4],
"padding": string(pad_mode),
"output_size": out_shape[1:3]
}
node.fluid_code.add_layer(
"conv2d_transpose", inputs=input, output=node, param_attr=attr)
if not channel_first:
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer(
"transpose", inputs=node, output=node, param_attr=attr)
def Max(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
keep_dims = node.get_attr("keep_dims")
dim = reduce_idx.value.tolist()
attr = {"dim": dim, "keep_dim": keep_dims}
node.fluid_code.add_layer(
"reduce_max", inputs=input, output=node, param_attr=attr)
def Sum(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
keep_dims = node.get_attr("keep_dims")
dim = reduce_idx.value.tolist()
attr = {"dim": dim, "keep_dim": keep_dims}
node.fluid_code.add_layer(
"reduce_sum", inputs=input, output=node, param_attr=attr)
def Cast(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
dtype = node.dtype_map[node.get_attr('DstT')]
attr = {"dtype": string(dtype)}
node.fluid_code.add_layer(
"cast", inputs=input, output=node, param_attr=attr)
def Split(self, node):
dim = self.graph.get_node(node.layer.input[0], copy=True)
input = self.graph.get_node(node.layer.input[1], copy=True)
assert dim.layer_type == "Const"
self.add_omit_nodes(dim.layer_name, node.layer_name)
num_split = node.get_attr('num_split')
dim = dim.value
attr = {"num_or_sections": num_split, "dim": dim}
node.fluid_code.add_layer(
"split", inputs=input, output=node, param_attr=attr)
def Squeeze(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
squeeze_dims = node.get_attr('squeeze_dims')
attr = {"axes": squeeze_dims}
node.fluid_code.add_layer(
"squeeze", inputs=input, output=node, param_attr=attr)
def Softmax(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
axis = node.get_attr("axis")
attr = {"axis": axis}
node.fluid_code.add_layer(
"softmax", inputs=input, output=node, param_attr=attr)
def ResizeNearestNeighbor(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
if resize_shape.layer_type == "Const":
resize_shape = resize_shape.value.tolist()
else:
resize_shape = self.decoder.infer_shape_tensor(resize_shape,
node.out_shapes[0])
align_corners = node.get_attr("align_corners")
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer(
"transpose", inputs=input, output=node, param_attr=attr)
attr = {"align_corners": align_corners, "out_shape": resize_shape}
node.fluid_code.add_layer(
"resize_nearest", inputs=node, output=node, param_attr=attr)
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer(
"transpose", inputs=node, output=node, param_attr=attr)
def ResizeBilinear(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
if resize_shape.layer_type == "Const":
resize_shape = resize_shape.value.tolist()
else:
resize_shape = self.decoder.infer_shape_tensor(resize_shape,
node.out_shapes[0])
align_corners = node.get_attr("align_corners")
attr = {"perm": [0, 3, 1, 2]}
node.fluid_code.add_layer(
"transpose", inputs=input, output=node, param_attr=attr)
attr = {
"align_corners": align_corners,
"out_shape": resize_shape,
"align_mode": 1
}
node.fluid_code.add_layer(
"resize_bilinear", inputs=node, output=node, param_attr=attr)
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer(
"transpose", inputs=node, output=node, param_attr=attr)
def GreaterEqual(self, node):
x = self.graph.get_node(node.layer.input[0], copy=True)
y = self.graph.get_node(node.layer.input[1], copy=True)
inputs = {"x": x, "y": y}
node.fluid_code.add_layer(
"greater_equal", inputs=inputs, output=node, param_attr=None)
def RandomUniform(self, node):
shape = self.graph.get_node(node.layer.input[0], copy=True)
self.add_omit_nodes(shape.layer_name, node.layer_name)
if shape.layer_type == "Const":
shape = shape.value.tolist()
else:
shape = self.decoder.infer_shape_tensor(shape)
attr = {"shape": shape, "min": 0.0, "max": 0.9999}
if shape[0] < 0:
input = self.batch_node
node.fluid_code.add_layer(
"uniform_random_batch_size_like",
inputs=input,
output=node,
param_attr=attr)
else:
node.fluid_code.add_layer(
"uniform_random", inputs=None, output=node, param_attr=attr)
def SquaredDifference(self, node):
x = self.graph.get_node(node.layer.input[0], copy=True)
y = self.graph.get_node(node.layer.input[1], copy=True)
inputs = {"x": x, "y": y}
node.fluid_code.add_layer(
"elementwise_sub", inputs=inputs, output=node, param_attr=None)
inputs = {"x": node, "y": node}
node.fluid_code.add_layer(
"elementwise_mul", inputs=inputs, output=node, param_attr=None)
def ExpandDims(self, node):
x = self.graph.get_node(node.layer.input[0], copy=True)
y = self.graph.get_node(node.layer.input[1], copy=True)
if y.layer_type == 'Const':
dim = y.value.tolist()
else:
dim = self.decoder.infer_tensor(y)
self.add_omit_nodes(y.layer_name, node.layer_name)
attr = {'axes': [dim]}
node.fluid_code.add_layer(
"unsqueeze", inputs=x, output=node, param_attr=attr)
def BatchToSpaceND(self, node):
x = self.graph.get_node(node.layer.input[0], copy=True)
y = self.graph.get_node(node.layer.input[1], copy=True)
if hasattr(node, 'skip') and node.skip:
node.fluid_code.add_layer(
"=", inputs=x, output=node, param_attr=None)
else:
raise Exception("BatchToSpaceND is not supported")
def SpaceToBatchND(self, node):
x = self.graph.get_node(node.layer.input[0], copy=True)
y = self.graph.get_node(node.layer.input[1], copy=True)
if hasattr(node, 'skip') and node.skip:
node.fluid_code.add_layer(
"=", inputs=x, output=node, param_attr=None)
else:
raise Exception("SpaceToBatchND is not supported")
transpose_name = gen_name("conv2dbackpropinput", "transpose")
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": input.name},
outputs=[transpose_name],
perm=[0, 3, 1, 2])
input_name = transpose_name
program.add_layer(
kernel="fluid.layers.conv2d_transpose",
inputs={"input": input_name},
outputs=[node.name],
bias_attr=False,
param_attr=string(kernel.layer_name),
num_filters=k_size[2],
filter_size=k_size[0:2],
stride=strides[2:4],
dilation=dilations[2:4],
padding=string(pad_mode),
output_size=out_shape[1:3])
if data_format == "NHWC":
program.add_layer(
kernel="fluid.layers.transpose",
inputs={"x": node.name},
outputs=[node.name],
perm=[0, 2, 3, 1])
......@@ -13,7 +13,6 @@
# limitations under the License.
# TODO useless node remove
from x2paddle.op_mapper.onnx_op_mapper import ONNXOpMapper
class ONNXOptimizer(object):
......
......@@ -236,26 +236,18 @@ class TFOptimizer(object):
def remove_transpose(self):
graph_copy = cp.deepcopy(self.graph)
nhwc_insensitive_ops = [
'Relu', 'Relu6', 'Abs', 'Sigmoid', 'Exp', 'Rsqrt', 'swish_f32',
'LeakyRelu', 'Cast', 'Tanh'
]
elementwise_ops = [
'Sub', 'Add', 'RealDiv', 'Maximum', 'Mul', 'FloorDiv',
'GreaterEqual'
]
optimize_ops = [
'Conv2D', 'MaxPool', 'FusedBatchNorm', 'DepthwiseConv2dNative',
'AvgPool', 'Pad', 'Conv2DBackpropInput', 'ResizeNearestNeighbor',
'ResizeBilinear', "Placeholder"
'GreateerEqual'
]
can_be_optimized_ops = [
'Conv2D', 'MaxPool', 'FusedBatchNorm', 'DepthwiseConv2dNative',
'AvgPool', 'Pad', 'Conv2DBackpropInput', 'ResizeNearestNeighbor',
'ResizeBilinear', "Placeholder", 'Relu', 'Relu6', 'Abs', 'Sigmoid',
'Exp', 'Rsqrt', 'swish_f32', 'LeakyRelu', 'Cast', 'Tanh'
'Placeholder', 'Relu', 'Relu6', 'Abs', 'Sigmoid', 'Exp', 'Rsqrt',
'swish_f32', 'LeakyRelu', 'Cast', 'Tanh'
]
# These ops may have one more Variable input
can_be_optimized_special_ops = ['ResizeBilinear']
for node_name in self.graph.topo_sort:
node = graph_copy.get_node(node_name)
if node is None:
......@@ -278,9 +270,10 @@ class TFOptimizer(object):
0].param_attr["perm"] != [0, 3, 1, 2]:
can_be_removed = False
break
elif out_node.layer_type in elementwise_ops:
elif out_node.layer_type in elementwise_ops or out_node.layer_type in can_be_optimized_special_ops:
can_be_removed = False
break
if can_be_removed and len(node.fluid_code.layers) > 1:
true_node = self.graph.get_node(node_name)
if true_node.layer_type == "Placeholder":
......@@ -298,6 +291,7 @@ class TFOptimizer(object):
-2].output = true_node.fluid_code.layers[-1].output
node.removed = True
del true_node.fluid_code.layers[-1]
for out_name in output_names:
out_node = self.graph.get_node(out_name)
out_node.fluid_code.layers[
......
# X2Paddle模型测试库
> 目前X2Paddle支持40+的TensorFlow OP,40+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下模型列表中测试了X2Paddle的转换。
> 目前X2Paddle支持50+的TensorFlow OP,40+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下模型列表中测试了X2Paddle的转换。
**注:** 受限于不同框架的差异,部分模型可能会存在目前无法转换的情况,如TensorFlow中包含控制流的模型,NLP模型等。对于CV常见的模型,如若您发现无法转换或转换失败,存在较大diff等问题,欢迎通过[ISSUE反馈](https://github.com/PaddlePaddle/X2Paddle/issues/new)的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
......@@ -22,7 +22,8 @@
| UNet | [code1](https://github.com/jakeret/tf_unet )/[code2](https://github.com/lyatdawn/Unet-Tensorflow) |-|
|MTCNN | [code](https://github.com/AITTSMD/MTCNN-Tensorflow) |-|
|YOLO-V3| [code](https://github.com/YunYang1994/tensorflow-yolov3) | 转换需要关闭NHWC->NCHW的优化,见[文档Q2](FAQ.md) |
|Inception_ResNet_V2| [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) | - |
| FALSR | [code](https://github.com/xiaomi-automl/FALSR) | - |
| DCSCN | [code](https://modelzoo.co/model/dcscn-super-resolution) | - |
## Caffe
......@@ -48,8 +49,8 @@
## ONNX
**注:** 部分模型来源于PyTorch,PyTorch的转换可参考[pytorch_to_onnx.md](pytorch_to_onnx.md)
| 模型 | 来源 | operator version|
|-------|--------|---------|
| 模型 | 来源 | operator version|备注|
|-------|--------|---------|---------|
| ResNet18 | [torchvison.model.resnet18](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9|
| ResNet34 | [torchvison.model.resnet34](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9|
| ResNet50 | [torchvison.model.resnet50](https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py) |9|
......@@ -65,4 +66,6 @@
| mNASNet | [pytorch(personal practice)](https://github.com/rwightman/gen-efficientnet-pytorch) |9|
| EfficientNet | [pytorch(personal practice)](https://github.com/rwightman/gen-efficientnet-pytorch) |9|
| SqueezeNet | [onnx official](https://s3.amazonaws.com/download.onnx/models/opset_9/squeezenet.tar.gz) |9|
|Ultra-Light-Fast-Generic-Face-Detector-1MB| [onnx_model](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/tree/master/models/onnx)| |
|Ultra-Light-Fast-Generic-Face-Detector-1MB| [onnx_model](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/tree/master/models/onnx)|9 |
|BERT| [pytorch(huggingface)](https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb)|11|转换时需指定input shape,见[文档Q3](FAQ.md)|
|GPT2| [pytorch(huggingface)](https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb)|11|转换时需指定input shape,见[文档Q3](FAQ.md)|
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册