Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
e57badeb
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e57badeb
编写于
7月 17, 2020
作者:
J
Jason
提交者:
GitHub
7月 17, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #311 from Channingss/paddle_onnx
add copyright & delete extra file
上级
22c18dd4
5b6614fa
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
87 addition
and
602 deletion
+87
-602
x2paddle/op_mapper/onnx2paddle/opsets/_shape_inference.py
x2paddle/op_mapper/onnx2paddle/opsets/_shape_inference.py
+0
-599
x2paddle/op_mapper/paddle2onnx/opset10/paddle_custom_layer/im2sequence.py
...er/paddle2onnx/opset10/paddle_custom_layer/im2sequence.py
+14
-0
x2paddle/op_mapper/paddle2onnx/opset10/paddle_custom_layer/yolo_box.py
...apper/paddle2onnx/opset10/paddle_custom_layer/yolo_box.py
+14
-0
x2paddle/op_mapper/paddle2onnx/opset11/opset.py
x2paddle/op_mapper/paddle2onnx/opset11/opset.py
+1
-1
x2paddle/op_mapper/paddle2onnx/opset11/paddle_custom_layer/im2sequence.py
...er/paddle2onnx/opset11/paddle_custom_layer/im2sequence.py
+14
-0
x2paddle/op_mapper/paddle2onnx/opset11/paddle_custom_layer/yolo_box.py
...apper/paddle2onnx/opset11/paddle_custom_layer/yolo_box.py
+14
-0
x2paddle/op_mapper/paddle2onnx/opset9/opset.py
x2paddle/op_mapper/paddle2onnx/opset9/opset.py
+1
-1
x2paddle/op_mapper/paddle2onnx/opset9/paddle_custom_layer/im2sequence.py
...per/paddle2onnx/opset9/paddle_custom_layer/im2sequence.py
+14
-0
x2paddle/op_mapper/paddle2onnx/opset9/paddle_custom_layer/multiclass_nms.py
.../paddle2onnx/opset9/paddle_custom_layer/multiclass_nms.py
+1
-1
x2paddle/op_mapper/paddle2onnx/opset9/paddle_custom_layer/yolo_box.py
...mapper/paddle2onnx/opset9/paddle_custom_layer/yolo_box.py
+14
-0
未找到文件。
x2paddle/op_mapper/onnx2paddle/opsets/_shape_inference.py
已删除
100644 → 0
浏览文件 @
22c18dd4
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
x2paddle.decoder.onnx_decoder
import
ONNXGraph
,
ONNXGraphNode
,
ONNXGraphDataNode
import
numpy
as
np
import
sympy
def
handle_negative_axis
(
axis
,
rank
):
return
axis
if
axis
>=
0
else
axis
+
rank
class
ShapeInference
():
def
__init__
(
self
,
decoder
,
auto_merge
=
False
):
self
.
decoder
=
decoder
self
.
fluid_data
=
{}
self
.
suggested_merge_
=
{}
self
.
symbolic_dims_
=
{}
self
.
auto_merge_
=
auto_merge
self
.
dispatcher
=
{
# activation ops
'Relu'
:
self
.
activation_ops
,
'LeakyRelu'
:
self
.
activation_ops
,
'Elu'
:
self
.
activation_ops
,
'ThresholdRelu'
:
self
.
activation_ops
,
'Prelu'
:
self
.
activation_ops
,
'Tanh'
:
self
.
activation_ops
,
'Sigmoid'
:
self
.
activation_ops
,
'Softplus'
:
self
.
activation_ops
,
'Softsign'
:
self
.
activation_ops
,
'HardSigmoid'
:
self
.
activation_ops
,
'Shrink'
:
self
.
activation_ops
,
'Exp'
:
self
.
activation_ops
,
'Clip'
:
self
.
activation_ops
,
# elementwise ops
'Add'
:
self
.
elementwise_ops
,
'Div'
:
self
.
elementwise_ops
,
'Sub'
:
self
.
elementwise_ops
,
'Mul'
:
self
.
elementwise_ops
,
'Pow'
:
self
.
elementwise_ops
,
'Sqrt'
:
self
.
elementwise_ops
,
'Softmax'
:
self
.
elementwise_ops
,
'Constant'
:
self
.
constant
,
'AveragePool'
:
self
.
pool
,
'MaxPool'
:
self
.
pool
,
'Cast'
:
self
.
cast
,
'Conv'
:
self
.
conv
,
'BatchNormalization'
:
self
.
batch_norm
,
'Pad'
:
self
.
pad
,
'Gather'
:
self
.
gather
,
'Split'
:
self
.
split
,
'Transpose'
:
self
.
transpose
,
'Reshape'
:
self
.
reshape
,
'MatMul'
:
self
.
matmul
,
'Squeeze'
:
self
.
squeeze
,
'Unsqueeze'
:
self
.
unsqueeze
,
'Concat'
:
self
.
concat
,
}
self
.
run_
=
True
self
.
suggested_merge_
=
{}
self
.
symbolic_dims_
=
{}
self
.
input_symbols_
=
{}
def
__call__
(
self
):
"""
run shape inference
"""
nodes
=
self
.
decoder
.
model
.
graph
.
node
node_map
=
self
.
decoder
.
onnx_graph
.
node_map
value_infos
=
self
.
decoder
.
onnx_graph
.
value_infos
onnx_model
=
self
.
decoder
.
model
#self._apply_suggested_merge(graph_input_only=True)
for
layer
in
nodes
:
node
=
node_map
[
layer
.
name
]
for
opt
in
layer
.
output
:
if
opt
in
value_infos
:
value_info
=
value_infos
[
opt
]
#if len(value_info['shape']) == 0 or value_info[
# 'dtype'] is None or 0 in value_info['shape']:
# #TODO add node shape inference
# if self.is_support_inference(node):
# op_infer = self.dispatcher[node.layer_type]
# #shapes = op_infer(node)
# print(node.layer_name + ': ')
# print(node.layer_type + ': ')
#else:
# print(node.layer_name)
node
.
dtype
=
value_info
[
'dtype'
]
node
.
out_shapes
.
append
(
value_info
[
'shape'
])
else
:
#TODO add node shape inference
if
self
.
is_support_inference
(
node
):
op_infer
=
self
.
dispatcher
[
node
.
layer_type
]
#shapes = op_infer(node)
#print(node.layer_name + ': ')
#print(node.layer_type + ': ')
def
get_input_node
(
self
,
node
,
idx
,
copy
=
False
):
return
self
.
decoder
.
onnx_graph
.
get_input_node
(
node
,
idx
=
idx
,
copy
=
copy
)
def
get_fluid_data
(
self
,
node
,
return_ndarray
=
False
):
data
=
None
if
node
.
layer_name
in
self
.
fluid_data
:
data
=
self
.
fluid_data
[
node
.
layer_name
]
elif
isinstance
(
node
,
ONNXGraphDataNode
):
data
=
node
.
weight
elif
isinstance
(
node
,
ONNXGraphNode
):
data
=
node
.
value
if
return_ndarray
:
return
data
else
:
return
data
.
tolist
()
def
is_support_inference
(
self
,
node
):
if
node
.
layer_type
not
in
self
.
dispatcher
:
print
(
"[WARNNING] Shape inference not support Node[{}](op type: {}) "
.
format
(
node
.
layer_name
,
node
.
layer_type
))
return
False
return
True
def
_try_get_value
(
self
,
node
,
idx
):
if
idx
>=
len
(
node
.
inputs
):
return
None
return
self
.
get_input_node
(
node
,
idx
=
idx
,
return_ndarray
=
True
)
def
_get_int_values
(
self
,
node
,
broadcast
=
False
):
values
=
[
self
.
_try_get_value
(
node
,
i
)
for
i
in
range
(
len
(
node
.
input
))]
if
all
([
v
is
not
None
for
v
in
values
]):
# some shape compute is in floating point, cast to int for sympy
for
i
,
v
in
enumerate
(
values
):
if
type
(
v
)
!=
np
.
ndarray
:
continue
if
len
(
v
.
shape
)
>
1
:
new_v
=
None
# ignore value for rank > 1
elif
len
(
v
.
shape
)
==
0
:
new_v
=
int
(
np
.
asscalar
(
v
))
else
:
assert
len
(
v
.
shape
)
==
1
new_v
=
[
int
(
vv
)
for
vv
in
v
]
values
[
i
]
=
new_v
values_len
=
[
len
(
v
)
if
type
(
v
)
==
list
else
0
for
v
in
values
]
max_len
=
max
(
values_len
)
if
max_len
>=
1
and
broadcast
:
# broadcast
for
i
,
v
in
enumerate
(
values
):
if
v
is
None
:
continue
# don't broadcast if value is unknown
if
type
(
v
)
==
list
:
if
len
(
v
)
<
max_len
:
values
[
i
]
=
v
*
max_len
else
:
assert
len
(
v
)
==
max_len
else
:
values
[
i
]
=
[
v
]
*
max_len
return
values
def
_compute_on_sympy_data
(
self
,
node
,
op_func
):
assert
len
(
node
.
outputs
)
==
1
values
=
self
.
_get_int_values
(
node
,
broadcast
=
True
)
if
all
([
v
is
not
None
for
v
in
values
]):
is_list
=
[
type
(
v
)
==
list
for
v
in
values
]
as_list
=
any
(
is_list
)
if
as_list
:
data
=
[
op_func
(
vs
)
for
vs
in
zip
(
*
values
)]
self
.
fluid_data
[
node
.
layer_name
]
=
data
node
.
out_shapes
.
append
(
data
.
shape
)
print
(
'*'
*
10
,
data
)
else
:
data
=
op_func
(
values
)
self
.
fluid_data
[
node
.
layer_name
]
=
data
print
(
'*'
*
10
,
data
)
node
.
out_shapes
.
append
(
data
.
shape
)
def
_pass_on_sympy_data
(
self
,
node
):
assert
len
(
node
.
inputs
)
==
1
or
node
.
layer_type
==
'Reshape'
self
.
_compute_on_sympy_data
(
node
,
lambda
x
:
x
[
0
])
def
_get_sympy_shape
(
self
,
node
,
idx
):
sympy_shape
=
[]
for
d
in
self
.
_get_shape
(
node
,
idx
):
if
type
(
d
)
==
str
:
sympy_shape
.
append
(
self
.
symbolic_dims_
[
d
]
if
d
in
self
.
symbolic_dims_
else
sympy
.
Symbol
(
d
,
integer
=
True
))
else
:
assert
None
!=
d
sympy_shape
.
append
(
d
)
return
sympy_shape
def
_check_merged_dims
(
self
,
dims
,
allow_broadcast
=
True
):
if
allow_broadcast
:
dims
=
[
d
for
d
in
dims
if
not
(
is_literal
(
d
)
and
int
(
d
)
<=
1
)]
if
not
all
([
d
==
dims
[
0
]
for
d
in
dims
]):
self
.
_add_suggested_merge
(
dims
,
apply
=
True
)
def
check_specific_shape
(
self
,
input_node
,
output_node
,
shape
):
if
-
1
in
input_node
.
out_shapes
[
0
]:
assert
"Shape inference failed, when calculate output_node[{}]'s
\
shape need specific shape, but got input_node[{}]'s shape: {}"
.
format
(
output_node
.
layer_name
,
input_node
.
layer_name
,
input_node
.
out_shapes
[
0
])
def
_add_suggested_merge
(
self
,
symbols
,
apply
=
False
):
assert
all
([(
type
(
s
)
==
str
and
s
in
self
.
symbolic_dims_
)
or
is_literal
(
s
)
for
s
in
symbols
])
symbols
=
set
(
symbols
)
for
k
,
v
in
self
.
suggested_merge_
.
items
():
if
k
in
symbols
:
symbols
.
remove
(
k
)
symbols
.
add
(
v
)
map_to
=
None
# if there is literal, map to it first
for
s
in
symbols
:
if
is_literal
(
s
):
map_to
=
s
break
# when no literals, map to input symbolic dims, then existing symbolic dims
if
map_to
is
None
:
for
s
in
symbols
:
if
s
in
self
.
input_symbols_
:
map_to
=
s
break
if
map_to
is
None
:
for
s
in
symbols
:
if
type
(
self
.
symbolic_dims_
[
s
])
==
sympy
.
Symbol
:
map_to
=
s
break
# when nothing to map to, use the shorter one
if
map_to
is
None
:
if
self
.
verbose_
>
0
:
print
(
'Potential unsafe merge between symbolic expressions: ({})'
.
format
(
','
.
join
(
symbols
)))
symbols_list
=
list
(
symbols
)
lens
=
[
len
(
s
)
for
s
in
symbols_list
]
map_to
=
symbols_list
[
lens
.
index
(
min
(
lens
))]
symbols
.
remove
(
map_to
)
def
_merge_symbols
(
self
,
dims
):
if
not
all
([
type
(
d
)
==
str
for
d
in
dims
]):
if
self
.
auto_merge_
:
assert
len
(
dims
)
==
2
# only allow symbol->int merge in binary ops for now
is_int
=
[
is_literal
(
d
)
for
d
in
dims
]
if
sum
(
is_int
)
==
1
:
int_dim
=
is_int
.
index
(
1
)
if
self
.
verbose_
>
0
:
print
(
'dim {} has been merged with value {}'
.
format
(
dims
[
1
-
int_dim
],
dims
[
int_dim
]))
self
.
_check_merged_dims
(
dims
,
allow_broadcast
=
False
)
return
dims
[
int_dim
]
else
:
if
self
.
verbose_
>
0
:
print
(
'dim {} has been mergd with dim {}'
.
format
(
dims
[
0
],
dims
[
1
]))
return
dims
[
0
]
else
:
return
None
if
all
([
d
==
dims
[
0
]
for
d
in
dims
]):
return
dims
[
0
]
merged
=
[
self
.
suggested_merge_
[
d
]
if
d
in
self
.
suggested_merge_
else
d
for
d
in
dims
]
if
all
([
d
==
merged
[
0
]
for
d
in
merged
]):
assert
merged
[
0
]
in
self
.
symbolic_dims_
return
merged
[
0
]
else
:
return
None
# broadcast from right to left, and merge symbolic dims if needed
def
_broadcast_shapes
(
self
,
shape1
,
shape2
):
new_shape
=
[]
rank1
=
len
(
shape1
)
rank2
=
len
(
shape2
)
new_rank
=
max
(
rank1
,
rank2
)
for
i
in
range
(
new_rank
):
dim1
=
shape1
[
rank1
-
1
-
i
]
if
i
<
rank1
else
1
dim2
=
shape2
[
rank2
-
1
-
i
]
if
i
<
rank2
else
1
if
dim1
==
1
or
dim1
==
dim2
:
new_dim
=
dim2
elif
dim2
==
1
:
new_dim
=
dim1
else
:
new_dim
=
self
.
_merge_symbols
([
dim1
,
dim2
])
if
not
new_dim
:
# warning about unsupported broadcast when not auto merge
# note that auto merge has the risk of incorrectly merge symbols while one of them being 1
# for example, 'a' = 1, 'b' = 5 at runtime is valid broadcasting, but with auto merge 'a' == 'b'
if
self
.
auto_merge_
:
self
.
_add_suggested_merge
([
dim1
,
dim2
],
apply
=
True
)
else
:
print
(
'unsupported broadcast between '
+
str
(
dim1
)
+
' '
+
str
(
dim2
))
new_shape
=
[
new_dim
]
+
new_shape
return
new_shape
def
_apply_suggested_merge
(
self
,
graph_input_only
=
False
):
if
not
self
.
suggested_merge_
:
return
for
i
in
list
(
self
.
decoder
.
model
.
graph
.
input
)
+
(
[]
if
graph_input_only
else
list
(
self
.
decoder
.
model
.
graph
.
value_info
)):
for
d
in
i
.
type
.
tensor_type
.
shape
.
dim
:
if
d
.
dim_param
in
self
.
suggested_merge_
:
v
=
self
.
suggested_merge_
[
d
.
dim_param
]
if
is_literal
(
v
):
d
.
dim_value
=
int
(
v
)
else
:
d
.
dim_param
=
v
def
_add_suggested_merge
(
self
,
symbols
,
apply
=
False
):
assert
all
([(
type
(
s
)
==
str
and
s
in
self
.
symbolic_dims_
)
or
is_literal
(
s
)
for
s
in
symbols
])
symbols
=
set
(
symbols
)
for
k
,
v
in
self
.
suggested_merge_
.
items
():
if
k
in
symbols
:
symbols
.
remove
(
k
)
symbols
.
add
(
v
)
map_to
=
None
# if there is literal, map to it first
for
s
in
symbols
:
if
is_literal
(
s
):
map_to
=
s
break
# when no literals, map to input symbolic dims, then existing symbolic dims
if
map_to
is
None
:
for
s
in
symbols
:
if
s
in
self
.
input_symbols_
:
map_to
=
s
break
if
map_to
is
None
:
for
s
in
symbols
:
if
type
(
self
.
symbolic_dims_
[
s
])
==
sympy
.
Symbol
:
map_to
=
s
break
# when nothing to map to, use the shorter one
if
map_to
is
None
:
if
self
.
verbose_
>
0
:
print
(
'Potential unsafe merge between symbolic expressions: ({})'
.
format
(
','
.
join
(
symbols
)))
symbols_list
=
list
(
symbols
)
lens
=
[
len
(
s
)
for
s
in
symbols_list
]
map_to
=
symbols_list
[
lens
.
index
(
min
(
lens
))]
symbols
.
remove
(
map_to
)
for
s
in
symbols
:
if
s
==
map_to
:
continue
if
is_literal
(
map_to
)
and
is_literal
(
s
):
assert
int
(
map_to
)
==
int
(
s
)
self
.
suggested_merge_
[
s
]
=
int
(
map_to
)
if
is_literal
(
map_to
)
else
map_to
for
k
,
v
in
self
.
suggested_merge_
.
items
():
if
v
==
s
:
self
.
suggested_merge_
[
k
]
=
map_to
if
apply
and
self
.
auto_merge_
:
self
.
_apply_suggested_merge
()
def
pool_conv_ops
(
self
,
node
):
fluid_shape
=
self
.
get_input_node
(
node
,
idx
=
0
).
out_shapes
[
0
]
if
len
(
node
.
inputs
)
>
1
:
W_shape
=
self
.
get_input_node
(
node
,
idx
=
1
).
out_shapes
[
0
]
rank
=
len
(
W_shape
)
-
2
# number of spatial axes
kernel_shape
=
W_shape
[
-
rank
:]
sympy_shape
[
1
]
=
W_shape
[
0
]
else
:
W_shape
=
None
kernel_shape
=
node
.
get_attr
(
'kernel_shape'
)
rank
=
len
(
kernel_shape
)
dilations
=
node
.
get_attr
(
'dilations'
,
[
1
]
*
rank
)
strides
=
node
.
get_attr
(
'strides'
,
[
1
]
*
rank
)
pads
=
node
.
get_attr
(
'pads'
)
effective_kernel_shape
=
[(
k
-
1
)
*
d
+
1
for
k
,
d
in
zip
(
kernel_shape
,
dilations
)]
if
pads
is
None
:
pads
=
[
0
]
*
(
2
*
rank
)
auto_pad
=
node
.
get_attr
(
'auto_pad'
,
b
'NOTSET'
).
decode
(
'utf-8'
)
if
auto_pad
!=
'VALID'
and
auto_pad
!=
'NOTSET'
:
try
:
residual
=
[
sympy
.
Mod
(
d
,
s
)
for
d
,
s
in
zip
(
fluid_shape
[
-
rank
:],
strides
)
]
total_pads
=
[
max
(
0
,
(
k
-
s
)
if
r
==
0
else
(
k
-
r
))
for
k
,
s
,
r
in
zip
(
effective_kernel_shape
,
strides
,
residual
)
]
except
TypeError
:
# sympy may throw TypeError: cannot determine truth value of Relational
total_pads
=
[
max
(
0
,
(
k
-
s
))
for
k
,
s
in
zip
(
effective_kernel_shape
,
strides
)
]
# assuming no residual if sympy throws error
elif
auto_pad
==
'VALID'
:
total_pads
=
[]
else
:
total_pads
=
[
0
]
*
rank
else
:
assert
len
(
pads
)
==
2
*
rank
total_pads
=
[
p1
+
p2
for
p1
,
p2
in
zip
(
pads
[:
rank
],
pads
[
rank
:])]
ceil_mode
=
node
.
get_attr
(
'ceil_mode'
,
0
)
for
i
in
range
(
rank
):
effective_input_size
=
fluid_shape
[
-
rank
+
i
]
if
len
(
total_pads
)
>
0
:
effective_input_size
=
effective_input_size
+
total_pads
[
i
]
if
ceil_mode
:
strided_kernel_positions
=
sympy
.
ceiling
(
(
effective_input_size
-
effective_kernel_shape
[
i
])
/
strides
[
i
])
else
:
strided_kernel_positions
=
(
effective_input_size
-
effective_kernel_shape
[
i
]
)
//
strides
[
i
]
fluid_shape
[
-
rank
+
i
]
=
strided_kernel_positions
+
1
node
.
out_shapes
.
append
(
fluid_shape
)
return
fluid_shape
def
cast
(
self
,
node
):
fluid_shape
=
self
.
get_input_node
(
node
,
idx
=
0
).
out_shape
[
0
]
node
.
out_shapes
.
append
(
fluid_shape
)
return
fluid_shape
def
pool
(
self
,
node
):
return
self
.
conv_pool_ops
(
node
)
def
conv
(
self
,
node
):
return
self
.
conv_pool_ops
(
node
)
def
batch_norm
(
self
,
node
):
fluid_shape
=
self
.
get_input_node
(
node
,
idx
=
0
).
out_shapes
[
0
]
node
.
out_shapes
.
append
(
fluid_shape
)
return
fluid_shape
def
activation_ops
(
self
,
node
):
fluid_shape
=
self
.
get_input_node
(
node
,
idx
=
0
).
out_shapes
[
0
]
node
.
out_shapes
.
append
(
fluid_shape
)
return
fluid_shape
def
elementwise_ops
(
self
,
node
):
fluid_shape
=
self
.
get_input_node
(
node
,
idx
=
0
).
out_shapes
[
0
]
node
.
out_shapes
.
append
(
fluid_shape
)
return
fluid_shape
def
pad
(
self
,
node
):
fluid_shape
=
self
.
get_input_node
(
node
,
idx
=
0
).
out_shapes
[
0
]
# op_set <= 10
pads
=
node
.
get_attr
(
'pads'
)
rank
=
len
(
fluid_shape
)
fluid_shape
=
[
d
+
pad_up
+
pad_down
for
d
,
pad_up
,
pad_down
in
zip
(
fluid_shape
,
pads
[:
rank
],
pads
[
rank
:])
]
node
.
out_shapes
.
append
(
fluid_shape
)
return
fluid_shape
def
gather
(
self
,
node
):
fluid_shape
=
self
.
get_input_node
(
node
,
idx
=
0
).
out_shapes
[
0
]
axis
=
handle_negative_axis
(
node
.
get_attr
(
'axis'
,
0
),
len
(
fluid_shape
))
indices_shape
=
self
.
get_input_node
(
node
,
idx
=
1
).
out_shapes
[
0
]
fluid_shape
=
fluid_shape
[:
axis
]
+
list
(
indices_shape
)
+
fluid_shape
[
axis
+
1
:]
input
=
self
.
get_input_node
(
node
,
0
)
if
input
.
layer_name
in
self
.
fluid_data
:
assert
0
==
axis
# only handle 1D sympy compute
idx
=
self
.
get_fluid_date
(
indices_shape
)
data
=
self
.
fluid_data
[
input
.
layer_name
]
if
type
(
data
)
==
list
:
if
type
(
idx
)
==
np
.
ndarray
and
len
(
idx
.
shape
)
==
1
:
self
.
fluid_data
[
node
.
layer_name
]
=
[
data
[
int
(
i
)]
for
i
in
idx
]
else
:
self
.
fluid_data
[
node
.
layer_name
]
=
data
[
int
(
idx
)]
else
:
assert
idx
==
0
self
.
fluid_data
[
node
.
layer_name
]
=
data
node
.
out_shapes
.
append
(
fluid_shape
)
return
fluid_shape
def
constant
(
self
,
node
):
if
isinstance
(
node
,
ONNXGraphNode
):
fluid_shape
=
node
.
value
.
shape
else
:
fluid_shape
=
node
.
weight
.
shape
node
.
out_shapes
.
append
(
fluid_shape
)
return
fluid_shape
def
split
(
self
,
node
):
fluid_shape
=
self
.
get_input_node
(
node
,
idx
=
0
).
out_shapes
[
0
]
axis
=
handle_negative_axis
(
node
.
get_attr
(
'axis'
,
0
),
len
(
fluid_shape
))
split
=
node
.
get_attr
(
'split'
)
if
not
split
:
num_outputs
=
len
(
node
.
outputs
)
split
=
[
fluid_shape
[
axis
]
/
sympy
.
Integer
(
num_outputs
)]
*
num_outputs
else
:
split
=
[
sympy
.
Integer
(
s
)
for
s
in
split
]
shapes
=
[]
for
i_o
in
range
(
len
(
split
)):
shape
=
fluid_shape
[:
axis
]
+
[
split
[
i_o
]]
+
fluid_shape
[
axis
+
1
:]
shapes
.
append
(
shape
)
node
.
out_shapes
+=
shapes
return
shapes
def
shape
(
self
,
node
):
fluid_shape
=
self
.
get_input_node
(
node
,
idx
=
0
).
out_shapes
[
0
]
fluid_shape
=
[
len
(
fluid_shape
),
]
node
.
out_shapes
.
append
(
fluid_shape
)
self
.
fluid_data
[
node
.
layer_name
]
=
np
.
array
(
fluid_shape
)
return
fluid_shape
def
transpose
(
self
,
node
):
fluid_shape
=
self
.
get_input_node
(
node
,
idx
=
0
).
out_shapes
[
0
]
perm
=
node
.
get_attr
(
'perm'
)
fulid_shape
=
np
.
array
(
fluid_shape
)[
perm
].
tolist
()
node
.
out_shapes
.
append
(
fluid_shape
)
return
fluid_shape
def
reshape
(
self
,
node
):
shape
=
self
.
get_input_node
(
node
,
idx
=
1
)
shape_data
=
self
.
get_fluid_data
(
shape
)
if
shape_data
is
not
None
:
if
-
1
in
shape_data
:
fluid_shape
=
self
.
get_input_node
(
node
,
idx
=
0
).
out_shapes
[
0
]
print
(
fluid_shape
)
index
=
shape_data
.
index
(
-
1
)
total_elements
=
1
for
dim
in
fluid_shape
:
total_elements
*=
dim
part_elements
=
1
for
dim
in
shape_data
:
if
dim
!=
-
1
:
part_elements
*=
dim
shape_data
[
index
]
=
total_elements
//
part_elements
node
.
out_shapes
.
append
(
shape_data
)
else
:
pass
return
shape_data
def
matmul
(
self
,
node
):
x_shape
=
self
.
get_input_node
(
node
,
idx
=
0
).
out_shapes
[
0
]
y_shape
=
self
.
get_input_node
(
node
,
idx
=
1
).
out_shapes
[
0
]
x_rank
=
len
(
x_shape
)
y_rank
=
len
(
y_shape
)
if
x_rank
==
1
and
y_rank
==
1
:
new_shape
=
[]
elif
x_rank
==
1
:
y_reduce_dim
=
-
2
new_shape
=
x_shape
[:
y_reduce_dim
]
+
[
x_shape
[
-
1
]]
elif
y_rank
==
1
:
x_reduce_dim
=
-
1
new_shape
=
x_shape
[:
x_reduce_dim
]
else
:
x_reduce_dim
=
-
1
y_reduce_dim
=
-
2
new_shape
=
self
.
_broadcast_shapes
(
x_shape
[:
-
2
],
y_shape
[:
-
2
])
+
[
x_shape
[
-
2
]]
+
[
y_shape
[
-
1
]]
node
.
out_shapes
.
append
(
new_shape
)
return
new_shape
def
squeeze
(
self
,
node
):
self
.
_pass_on_sympy_data
(
node
)
def
unsqueeze
(
self
,
node
):
self
.
_pass_on_sympy_data
(
node
)
def
concat
(
self
,
node
):
if
any
([
i
in
self
.
fluid_data
for
i
in
node
.
inputs
]):
values
=
self
.
_get_int_values
(
node
)
if
all
([
v
is
not
None
for
v
in
values
]):
assert
0
==
get_attribute
(
node
,
'axis'
)
self
.
fluid_data
[
node
.
layer_name
]
=
[]
for
i
in
range
(
len
(
node
.
input
)):
value
=
values
[
i
]
if
type
(
value
)
==
list
:
self
.
fluid_data
[
node
.
layer_name
].
extend
(
value
)
else
:
self
.
fluid_data
[
node
.
layer_name
].
append
(
value
)
x2paddle/op_mapper/paddle2onnx/opset10/paddle_custom_layer/im2sequence.py
浏览文件 @
e57badeb
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
onnx
import
onnx
import
numpy
as
np
import
numpy
as
np
from
onnx
import
onnx_pb
,
helper
from
onnx
import
onnx_pb
,
helper
...
...
x2paddle/op_mapper/paddle2onnx/opset10/paddle_custom_layer/yolo_box.py
浏览文件 @
e57badeb
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
onnx
import
onnx
import
numpy
as
np
import
numpy
as
np
from
onnx
import
onnx_pb
,
helper
from
onnx
import
onnx_pb
,
helper
...
...
x2paddle/op_mapper/paddle2onnx/opset11/opset.py
浏览文件 @
e57badeb
x2paddle/op_mapper/paddle2onnx/opset11/paddle_custom_layer/im2sequence.py
浏览文件 @
e57badeb
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
onnx
import
onnx
import
numpy
as
np
import
numpy
as
np
from
onnx
import
onnx_pb
,
helper
from
onnx
import
onnx_pb
,
helper
...
...
x2paddle/op_mapper/paddle2onnx/opset11/paddle_custom_layer/yolo_box.py
浏览文件 @
e57badeb
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
onnx
import
onnx
import
numpy
as
np
import
numpy
as
np
from
onnx
import
onnx_pb
,
helper
from
onnx
import
onnx_pb
,
helper
...
...
x2paddle/op_mapper/paddle2onnx/opset9/opset.py
浏览文件 @
e57badeb
x2paddle/op_mapper/paddle2onnx/opset9/paddle_custom_layer/im2sequence.py
浏览文件 @
e57badeb
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
onnx
import
onnx
import
numpy
as
np
import
numpy
as
np
from
onnx
import
onnx_pb
,
helper
from
onnx
import
onnx_pb
,
helper
...
...
x2paddle/op_mapper/paddle2onnx/opset9/paddle_custom_layer/multiclass_nms.py
浏览文件 @
e57badeb
x2paddle/op_mapper/paddle2onnx/opset9/paddle_custom_layer/yolo_box.py
浏览文件 @
e57badeb
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
onnx
import
onnx
import
numpy
as
np
import
numpy
as
np
from
onnx
import
onnx_pb
,
helper
from
onnx
import
onnx_pb
,
helper
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录