Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
e2b3e7e0
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e2b3e7e0
编写于
4月 16, 2021
作者:
J
Jason
提交者:
GitHub
4月 16, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #536 from SunAhong1993/develop
add PyTorch op
上级
db1a6617
91879f50
变更
13
展开全部
显示空白变更内容
内联
并排
Showing
13 changed file
with
1804 addition
and
514 deletion
+1804
-514
x2paddle/core/program.py
x2paddle/core/program.py
+13
-6
x2paddle/decoder/pytorch_decoder.py
x2paddle/decoder/pytorch_decoder.py
+1
-1
x2paddle/decoder/tf_decoder.py
x2paddle/decoder/tf_decoder.py
+7
-1
x2paddle/op_mapper/dygraph/pytorch2paddle/aten.py
x2paddle/op_mapper/dygraph/pytorch2paddle/aten.py
+1064
-283
x2paddle/op_mapper/dygraph/pytorch2paddle/prim.py
x2paddle/op_mapper/dygraph/pytorch2paddle/prim.py
+130
-45
x2paddle/op_mapper/dygraph/pytorch2paddle/prim2code.py
x2paddle/op_mapper/dygraph/pytorch2paddle/prim2code.py
+460
-143
x2paddle/op_mapper/dygraph/pytorch2paddle/pytorch_custom_layer/__init__.py
...r/dygraph/pytorch2paddle/pytorch_custom_layer/__init__.py
+2
-1
x2paddle/op_mapper/dygraph/pytorch2paddle/pytorch_custom_layer/instance_norm.py
...raph/pytorch2paddle/pytorch_custom_layer/instance_norm.py
+63
-0
x2paddle/op_mapper/dygraph/pytorch2paddle/pytorch_op_mapper.py
...dle/op_mapper/dygraph/pytorch2paddle/pytorch_op_mapper.py
+30
-23
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
+11
-3
x2paddle/op_mapper/static/tf2paddle/tf_op_mapper.py
x2paddle/op_mapper/static/tf2paddle/tf_op_mapper.py
+11
-3
x2paddle/optimizer/pytorch_code_optimizer/layer_code_generator.py
.../optimizer/pytorch_code_optimizer/layer_code_generator.py
+10
-5
x2paddle/optimizer/pytorch_code_optimizer/module_graph.py
x2paddle/optimizer/pytorch_code_optimizer/module_graph.py
+2
-0
未找到文件。
x2paddle/core/program.py
浏览文件 @
e2b3e7e0
...
...
@@ -76,6 +76,7 @@ class PaddleGraph(object):
self
.
source_type
=
source_type
self
.
custom_code
=
None
self
.
inputs_info
=
None
self
.
has_unpack
=
False
def
set_name
(
self
,
name
):
self
.
name
=
name
.
replace
(
"-"
,
"_"
).
replace
(
"/"
,
"_"
)
...
...
@@ -112,6 +113,8 @@ class PaddleGraph(object):
layer_id
)
layer
=
PaddleLayer
(
layer_id
,
kernel
,
inputs
,
outputs
,
scope_name
=
scope_name
,
**
kwargs
)
self
.
layers
[
layer_id
]
=
layer
if
layer
.
kernel
in
[
"prim.list_unpack"
or
"prim.tuple_unpack"
]:
self
.
has_unpack
=
True
return
layer_id
def
del_layer
(
self
,
layer_id
):
...
...
@@ -272,12 +275,16 @@ class PaddleGraph(object):
def
gen_dygraph_model
(
self
,
save_dir
,
jit_type
=
None
):
if
jit_type
==
"trace"
:
if
not
self
.
has_unpack
:
from
x2paddle.optimizer.pytorch_code_optimizer
import
HierarchicalTree
hierarchical_tree
=
HierarchicalTree
(
self
)
for
layer_id
,
layer
in
self
.
layers
.
items
():
hierarchical_tree
.
insert
(
layer
)
hierarchical_tree
.
save_source_files
(
save_dir
)
self
.
dump_dygraph_parameter
(
save_dir
)
else
:
self
.
gen_dygraph_code
(
save_dir
)
self
.
dump_dygraph_parameter
(
save_dir
)
else
:
if
self
.
source_type
==
"pytorch"
:
from
x2paddle.optimizer.pytorch_code_optimizer
import
ModuleGraph
...
...
x2paddle/decoder/pytorch_decoder.py
浏览文件 @
e2b3e7e0
x2paddle/decoder/tf_decoder.py
浏览文件 @
e2b3e7e0
...
...
@@ -101,6 +101,7 @@ class TFGraphNode(GraphNode):
@
property
def
name
(
self
):
if
hasattr
(
self
,
'index'
):
print
(
self
.
layer_type
)
return
self
.
layer_name
+
"_p{}"
.
format
(
self
.
index
)
return
self
.
layer_name
...
...
@@ -184,7 +185,7 @@ class TFGraph(Graph):
node
=
super
(
TFGraph
,
self
).
get_node
(
new_node_name
,
copy
)
if
node
is
None
:
return
None
if
node
.
layer_type
==
"Switch"
:
if
node
.
layer_type
in
[
"Switch"
,
"Reshape"
,
"Sub"
]
:
if
hasattr
(
node
,
'index'
):
del
node
.
index
if
len
(
items
)
==
1
and
node
.
layer_type
in
self
.
multi_out_ops
:
...
...
@@ -284,6 +285,11 @@ class TFGraph(Graph):
if
node_name
in
self
.
output_nodes
:
idx
=
self
.
output_nodes
.
index
(
node_name
)
self
.
output_nodes
[
idx
]
=
input_node
.
layer_name
if
len
(
input_node
.
outputs
)
>
0
:
self
.
output_nodes
.
pop
(
idx
)
else
:
self
.
output_nodes
[
idx
]
=
input_node
.
layer_name
def
_remove_cast_node
(
self
):
cast_node
=
list
()
...
...
x2paddle/op_mapper/dygraph/pytorch2paddle/aten.py
浏览文件 @
e2b3e7e0
此差异已折叠。
点击以展开。
x2paddle/op_mapper/dygraph/pytorch2paddle/prim.py
浏览文件 @
e2b3e7e0
...
...
@@ -37,20 +37,24 @@ def prim_Constant(mapper, graph, node):
tensor_value
=
value
value
=
"{}"
.
format
(
value
)
if
"tensor"
in
value
:
if
isinstance
(
tensor_value
,
list
)
or
isinstance
(
tensor_value
,
tuple
):
if
isinstance
(
tensor_value
,
list
)
or
isinstance
(
tensor_value
,
tuple
):
name_dict
=
dict
()
for
i
,
tv
in
enumerate
(
tensor_value
):
output_name_i
=
"{}_p{}"
.
format
(
output_name
,
i
)
output_name_i
=
"{}_p{}"
.
format
(
output_name
,
i
)
key_i
=
"input{}"
.
format
(
i
)
mapper
.
paddle_params
[
output_name_i
]
=
tv
.
cpu
().
detach
().
numpy
()
mapper
.
paddle_params
[
output_name_i
]
=
tv
.
cpu
().
detach
(
).
numpy
()
graph
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
output_name_i
],
scope_name
=
scope_name
,
dtype
=
string
(
str
(
mapper
.
paddle_params
[
output_name_i
].
dtype
)),
shape
=
mapper
.
paddle_params
[
output_name_i
].
shape
,
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
dtype
=
string
(
str
(
mapper
.
paddle_params
[
output_name_i
].
dtype
)),
shape
=
mapper
.
paddle_params
[
output_name_i
].
shape
,
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
name_dict
[
key_i
]
=
output_name_i
graph
.
add_layer
(
"prim.list"
,
...
...
@@ -59,8 +63,19 @@ def prim_Constant(mapper, graph, node):
scope_name
=
scope_name
)
return
[],
[
output_name
]
else
:
mapper
.
pytorch_params
[
output_name
]
=
tensor_value
.
cpu
().
detach
().
numpy
()
# mapper.pytorch_params[output_name] = tensor_value.cpu().detach().numpy()
mapper
.
paddle_params
[
output_name
]
=
tensor_value
.
cpu
().
detach
(
).
numpy
()
graph
.
add_layer
(
"self.create_parameter"
,
inputs
=
{},
outputs
=
[
output_name
],
scope_name
=
scope_name
,
dtype
=
string
(
str
(
mapper
.
paddle_params
[
output_name
].
dtype
)),
shape
=
mapper
.
paddle_params
[
output_name
].
shape
,
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
return
[],
[
output_name
]
if
"inf"
in
str
(
value
):
t
=
str
(
type
(
value
)).
split
(
"'"
)[
1
]
if
str
(
value
).
startswith
(
"-"
):
...
...
@@ -72,7 +87,11 @@ def prim_Constant(mapper, graph, node):
value
=
int
(
math
.
pow
(
2
,
31
)
-
1
)
mapper
.
attrs
[
output_name
]
=
value
graph
.
add_layer
(
"prim.constant"
,
inputs
=
{},
outputs
=
[
output_name
],
scope_name
=
scope_name
,
value
=
value
)
"prim.constant"
,
inputs
=
{},
outputs
=
[
output_name
],
scope_name
=
scope_name
,
value
=
value
)
return
[],
[
output_name
]
...
...
@@ -96,12 +115,17 @@ def prim_data(mapper, graph, node):
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%4336
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
layer_inputs
[
"input"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"prim.equal"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
graph
.
add_layer
(
"prim.equal"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
return
current_inputs
,
current_outputs
...
...
@@ -127,14 +151,15 @@ def prim_DictConstruct(mapper, graph, node):
current_outputs
=
[
output_name
]
# 处理每个输入
for
i
,
input_name
in
enumerate
(
inputs_name
):
if
i
%
2
==
0
:
layer_attrs
[
"key{}"
.
format
(
int
(
i
/
2
))]
=
mapper
.
attrs
[
input_name
]
if
i
%
2
==
0
:
layer_attrs
[
"key{}"
.
format
(
int
(
i
/
2
))]
=
mapper
.
attrs
[
input_name
]
else
:
layer_inputs
[
"value{}"
.
format
(
int
(
i
/
2
))]
=
input_name
layer_inputs
[
"value{}"
.
format
(
int
(
i
/
2
))]
=
input_name
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"prim.dict_construct"
,
graph
.
add_layer
(
"prim.dict_construct"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
,
...
...
@@ -142,7 +167,6 @@ def prim_DictConstruct(mapper, graph, node):
return
current_inputs
,
current_outputs
def
prim_GetAttr
(
mapper
,
graph
,
node
):
""" 获取attribute信息。
...
...
@@ -203,8 +227,13 @@ def prim_If(mapper, graph, node):
input_node
=
list
(
node
.
inputs
())[
0
].
node
()
script_input_unique_id
=
list
(
node
.
inputs
())[
0
].
unique
()
input_node_name
=
mapper
.
outputs_info
[
script_input_unique_id
]
mapper
.
_check_input
(
graph
,
input_node
,
input_node_name
,
current_outputs
,
scope_name
)
graph
.
add_layer
(
"prim.if"
,
inputs
=
{
'input'
:
input_node_name
},
outputs
=
node_outputs
,
scope_name
=
scope_name
)
mapper
.
_check_input
(
graph
,
input_node
,
input_node_name
,
current_outputs
,
scope_name
)
graph
.
add_layer
(
"prim.if"
,
inputs
=
{
'input'
:
input_node_name
},
outputs
=
node_outputs
,
scope_name
=
scope_name
)
current_layer
=
list
(
graph
.
layers
.
values
())[
-
1
]
block0
=
list
(
node
.
blocks
())[
0
]
block0_graph
,
graph_inputs0
=
mapper
.
traverse
(
block0
,
current_layer
)
...
...
@@ -240,12 +269,17 @@ def prim_ListConstruct(mapper, graph, node):
current_outputs
=
[
output_name
]
# 处理每个输入
for
i
,
input_name
in
enumerate
(
inputs_name
):
mapper
.
_check_input
(
graph
,
inputs_node
[
i
],
input_name
,
current_outputs
,
scope_name
)
mapper
.
_check_input
(
graph
,
inputs_node
[
i
],
input_name
,
current_outputs
,
scope_name
)
layer_inputs
[
"input{}"
.
format
(
i
)]
=
input_name
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
layer_id
=
graph
.
add_layer
(
"prim.list"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
layer_id
=
graph
.
add_layer
(
"prim.list"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
mapper
.
output2id
[
output_name
]
=
layer_id
return
current_inputs
,
current_outputs
...
...
@@ -268,13 +302,17 @@ def prim_ListUnpack(mapper, graph, node):
# 获取当前节点输出的list
current_outputs
=
layer_outputs
.
copy
()
# 处理输入0,即%4354
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
layer_inputs
[
"input"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"prim.list_unpack"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
"prim.list_unpack"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
mapper
.
split_len
[
list
(
layer_inputs
.
values
())[
0
]]
=
len
(
layer_outputs
)
return
current_inputs
,
current_outputs
...
...
@@ -333,7 +371,11 @@ def prim_Loop(mapper, graph, node):
scope_name
=
scope_name
)
node_outputs
.
append
(
block_input_node_name
)
graph
.
add_layer
(
"prim.loop"
,
inputs
=
loop_inputs
,
outputs
=
loop_outputs
,
scope_name
=
scope_name
)
graph
.
add_layer
(
"prim.loop"
,
inputs
=
loop_inputs
,
outputs
=
loop_outputs
,
scope_name
=
scope_name
)
current_layer
=
list
(
graph
.
layers
.
values
())[
-
1
]
block_graph
,
graph_inputs
=
mapper
.
traverse
(
block
,
current_layer
)
for
i
,
input_name
in
enumerate
(
graph_inputs
):
...
...
@@ -361,12 +403,17 @@ def prim_min(mapper, graph, node):
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%86
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
layer_inputs
[
"input"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"prim.min"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
graph
.
add_layer
(
"prim.min"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
return
current_inputs
,
current_outputs
...
...
@@ -388,14 +435,19 @@ def prim_NumToTensor(mapper, graph, node):
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%86
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
inputs_inputs_name
,
inputs_inputs_node
=
mapper
.
_get_inputs_name
(
inputs_node
[
0
])
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
inputs_inputs_name
,
inputs_inputs_node
=
mapper
.
_get_inputs_name
(
inputs_node
[
0
])
if
inputs_node
[
0
].
kind
()
==
"aten::size"
and
len
(
inputs_inputs_name
)
>
1
:
layer_inputs
[
"input"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"prim_equal"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
"prim_equal"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
else
:
layer_inputs
[
"fill_value"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
...
...
@@ -428,13 +480,17 @@ def prim_RaiseException(mapper, graph, node):
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%76
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
layer_inputs
[
"input"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"prim.exception"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
"prim.exception"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
return
current_inputs
,
current_outputs
...
...
@@ -455,13 +511,17 @@ def prim_requires_grad(mapper, graph, node):
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%86
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
layer_inputs
[
"input"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"prim.requires_grad"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
"prim.requires_grad"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
return
current_inputs
,
current_outputs
...
...
@@ -518,13 +578,17 @@ def prim_shape(mapper, graph, node):
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%input.8
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
layer_inputs
[
"input"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"paddle.shape"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
"paddle.shape"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
return
current_inputs
,
current_outputs
...
...
@@ -551,7 +615,11 @@ def prim_TupleConstruct(mapper, graph, node):
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"prim.tuple"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
graph
.
add_layer
(
"prim.tuple"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
return
current_inputs
,
current_outputs
...
...
@@ -569,15 +637,23 @@ def prim_TupleUnpack(mapper, graph, node):
outputs_name
=
mapper
.
_get_outputs_name
(
node
)
layer_outputs
=
outputs_name
layer_inputs
=
{}
layer_attrs
=
{}
inputs_name
,
inputs_node
=
mapper
.
_get_inputs_name
(
node
)
if
inputs_node
[
0
].
kind
()
==
"prim::GetAttr"
:
layer_attrs
[
"input"
]
=
list
(
mapper
.
pytorch_params
[
inputs_name
[
0
]])
else
:
layer_inputs
[
"input"
]
=
inputs_name
[
0
]
# 获取当前节点输出的list
current_outputs
=
outputs_name
layer_inputs
[
"input"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"prim.tuple_unpack"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
"prim.tuple_unpack"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
,
**
layer_attrs
)
return
current_inputs
,
current_outputs
...
...
@@ -601,12 +677,17 @@ def prim_unchecked_cast(mapper, graph, node):
# 获取当前节点输出的list
current_outputs
=
[
output_name
]
# 处理输入0,即%size.63
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
mapper
.
_check_input
(
graph
,
inputs_node
[
0
],
inputs_name
[
0
],
current_outputs
,
scope_name
)
layer_inputs
[
"input"
]
=
inputs_name
[
0
]
# 获取当前节点输入的list
current_inputs
=
list
(
layer_inputs
.
values
())
graph
.
add_layer
(
"prim.equal"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
graph
.
add_layer
(
"prim.equal"
,
inputs
=
layer_inputs
,
outputs
=
layer_outputs
,
scope_name
=
scope_name
)
return
current_inputs
,
current_outputs
...
...
@@ -623,5 +704,9 @@ def prim_Uninitialized(mapper, graph, node):
output
=
list
(
node
.
outputs
())[
0
]
mapper
.
attrs
[
output_name
]
=
None
graph
.
add_layer
(
"prim.constant"
,
inputs
=
{},
outputs
=
[
output_name
],
scope_name
=
scope_name
,
value
=
None
)
"prim.constant"
,
inputs
=
{},
outputs
=
[
output_name
],
scope_name
=
scope_name
,
value
=
None
)
return
[],
[
output_name
]
x2paddle/op_mapper/dygraph/pytorch2paddle/prim2code.py
浏览文件 @
e2b3e7e0
此差异已折叠。
点击以展开。
x2paddle/op_mapper/dygraph/pytorch2paddle/pytorch_custom_layer/__init__.py
浏览文件 @
e2b3e7e0
...
...
@@ -14,3 +14,4 @@
from
.gather
import
Gather
from
.instance_norm
import
InstanceNorm
\ No newline at end of file
x2paddle/op_mapper/dygraph/pytorch2paddle/pytorch_custom_layer/instance_norm.py
0 → 100644
浏览文件 @
e2b3e7e0
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
from
paddle.nn.functional
import
instance_norm
from
paddle.fluid.initializer
import
Constant
class
InstanceNorm
(
paddle
.
nn
.
Layer
):
"""
This class is based class for InstanceNorm1D, 2d, 3d.
See InstaceNorm1D, InstanceNorm2D or InstanceNorm3D for more details.
"""
def
__init__
(
self
,
num_features
,
epsilon
=
1e-5
,
momentum
=
0.9
,
weight_attr
=
None
,
bias_attr
=
None
,
data_format
=
"NCHW"
,
name
=
None
):
super
(
InstanceNorm
,
self
).
__init__
()
if
weight_attr
==
False
or
bias_attr
==
False
:
assert
weight_attr
==
bias_attr
,
"weight_attr and bias_attr must be set to Fasle at the same time in InstanceNorm"
self
.
_epsilon
=
epsilon
self
.
_weight_attr
=
weight_attr
self
.
_bias_attr
=
bias_attr
if
weight_attr
!=
False
and
bias_attr
!=
False
:
self
.
scale
=
self
.
create_parameter
(
attr
=
self
.
_weight_attr
,
shape
=
[
num_features
],
default_initializer
=
Constant
(
1.0
),
is_bias
=
False
)
self
.
bias
=
self
.
create_parameter
(
attr
=
self
.
_bias_attr
,
shape
=
[
num_features
],
default_initializer
=
Constant
(
0.0
),
is_bias
=
True
)
else
:
self
.
scale
=
None
self
.
bias
=
None
def
forward
(
self
,
input
):
return
instance_norm
(
input
,
weight
=
self
.
scale
,
bias
=
self
.
bias
,
eps
=
self
.
_epsilon
)
def
extra_repr
(
self
):
return
'num_features={}, epsilon={}'
.
format
(
self
.
scale
.
shape
[
0
],
self
.
_epsilon
)
x2paddle/op_mapper/dygraph/pytorch2paddle/pytorch_op_mapper.py
浏览文件 @
e2b3e7e0
...
...
@@ -50,6 +50,7 @@ class PyTorchOpMapper(OpMapper):
op_list
.
append
(
node
.
kind
())
for
block
in
node
.
blocks
():
_update_op_list
(
block
)
op_list
=
list
()
_update_op_list
(
script_graph
)
op_list
=
list
(
set
(
op_list
))
...
...
@@ -62,8 +63,8 @@ class PyTorchOpMapper(OpMapper):
return
True
else
:
if
len
(
unsupported_ops
)
>
0
:
print
(
"
\n
========= {} OPs are not supported yet ==========="
.
format
(
len
(
unsupported_ops
)))
print
(
"
\n
========= {} OPs are not supported yet ==========="
.
format
(
len
(
unsupported_ops
)))
for
op
in
unsupported_ops
:
print
(
"========== {} ============"
.
format
(
op
))
return
False
...
...
@@ -85,7 +86,10 @@ class PyTorchOpMapper(OpMapper):
current_node_outputs
.
extend
(
outputs
)
# 初始化
graph
=
PaddleGraph
(
source_type
=
"pytorch"
,
parent_layer
=
parent_layer
,
graph_type
=
"dygraph"
)
graph
=
PaddleGraph
(
source_type
=
"pytorch"
,
parent_layer
=
parent_layer
,
graph_type
=
"dygraph"
)
if
"TopLevelTracedModule"
in
str
(
type
(
self
.
script
)):
graph
.
set_script
(
self
.
script
)
current_node_outputs
=
[]
...
...
@@ -98,7 +102,8 @@ class PyTorchOpMapper(OpMapper):
if
str
(
ivalue
.
type
())
not
in
[
"Tensor"
,
"Dict[str, Tensor]"
]:
graph
.
set_name
(
str
(
ivalue
.
type
()).
split
(
"."
)[
-
1
])
continue
inputs
,
outputs
=
self
.
data
(
graph
,
node
,
ivalue
.
unique
(),
input_ct
)
inputs
,
outputs
=
self
.
data
(
graph
,
node
,
ivalue
.
unique
(),
input_ct
)
input_ct
+=
1
# 转换中间节点
for
node
in
script_graph
.
nodes
():
...
...
@@ -183,8 +188,9 @@ class PyTorchOpMapper(OpMapper):
outputs
=
[
output_name
],
scope_name
=
scope_name
,
dtype
=
string
(
str
(
param
.
dtype
)),
shape
=
param
.
shape
,
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
shape
=
param
.
shape
,
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
self
.
output2id
[
output_name
]
=
layer_id
else
:
if
isinstance
(
param
,
dict
)
and
"Tensor"
in
param
and
\
...
...
@@ -211,8 +217,9 @@ class PyTorchOpMapper(OpMapper):
outputs
=
[
output_name
],
scope_name
=
scope_name
,
dtype
=
string
(
str
(
param
.
dtype
)),
shape
=
param
.
shape
,
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
shape
=
param
.
shape
,
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
node_outputs
.
append
(
output_name
)
self
.
output2id
[
output_name
]
=
layer_id
return
...
...
@@ -232,7 +239,8 @@ class PyTorchOpMapper(OpMapper):
value
=
string
(
param
)
if
isinstance
(
param
,
str
)
else
param
)
node_outputs
.
append
(
output_name
)
elif
node
.
kind
()
==
"prim::Constant"
and
output_name
in
self
.
pytorch_params
:
elif
node
.
kind
(
)
==
"prim::Constant"
and
output_name
in
self
.
pytorch_params
:
param
=
self
.
pytorch_params
[
output_name
]
self
.
paddle_params
[
output_name
]
=
param
layer_id
=
graph
.
add_layer
(
...
...
@@ -241,11 +249,10 @@ class PyTorchOpMapper(OpMapper):
outputs
=
[
output_name
],
scope_name
=
scope_name
,
dtype
=
string
(
str
(
param
.
dtype
)),
shape
=
param
.
shape
,
shape
=
param
.
shape
,
default_initializer
=
"paddle.nn.initializer.Constant(value=0.0)"
)
self
.
output2id
[
output_name
]
=
layer_id
def
_get_inputs_name
(
self
,
node
):
inputs_name
=
[]
inputs_node
=
[]
...
...
@@ -257,7 +264,6 @@ class PyTorchOpMapper(OpMapper):
inputs_name
.
append
(
input_name
)
return
inputs_name
,
inputs_node
def
data
(
self
,
graph
,
node
,
uid
,
input_ct
):
scope_name
=
self
.
normalize_scope_name
(
node
)
for
output_ivalue
in
node
.
outputs
():
...
...
@@ -276,7 +282,8 @@ class PyTorchOpMapper(OpMapper):
data
=
output_name
)
if
self
.
input_examples
is
not
None
:
input_np
=
self
.
input_examples
[
input_ct
].
detach
().
numpy
()
self
.
inputs_info
[
output_name
]
=
[
list
(
input_np
.
shape
),
str
(
input_np
.
dtype
)]
self
.
inputs_info
[
output_name
]
=
[
list
(
input_np
.
shape
),
str
(
input_np
.
dtype
)]
return
[],
[
output_name
]
def
equal
(
self
,
graph
,
node
,
uid
=
None
,
parent_layer
=
None
,
index
=
None
):
...
...
@@ -289,7 +296,8 @@ class PyTorchOpMapper(OpMapper):
control_output_id
=
index
-
1
output_node_name
=
parent_layer
.
outputs
[
control_output_id
]
current_outputs
=
[
output_node_name
]
self
.
_check_input
(
graph
,
node
,
input_node_name
,
current_outputs
,
scope_name
)
self
.
_check_input
(
graph
,
node
,
input_node_name
,
current_outputs
,
scope_name
)
graph
.
add_layer
(
"prim.equal"
,
inputs
=
{
'input'
:
input_node_name
},
...
...
@@ -328,10 +336,10 @@ class PyTorchOpMapper(OpMapper):
if
self
.
scope_name2id
[
i
][
ns
]
!=
0
:
name_segments
[
i
]
=
name_segments
[
i
]
+
\
"__{}"
.
format
(
self
.
scope_name2id
[
i
][
ns
])
prefix_scope_name
=
"/"
.
join
(
name_segments
[
1
:
i
+
1
])
prefix_scope_name
=
"/"
.
join
(
name_segments
[
1
:
i
+
1
])
is_found
=
False
for
j
in
range
(
len
(
self
.
scope_name_list
)):
last_scope_name
=
self
.
scope_name_list
[
-
1
-
j
]
last_scope_name
=
self
.
scope_name_list
[
-
1
-
j
]
if
last_scope_name
.
startswith
(
prefix_scope_name
+
"/"
)
\
or
last_scope_name
==
prefix_scope_name
:
if
j
!=
0
:
# and i != len(name_segments) - 1:
...
...
@@ -346,4 +354,3 @@ class PyTorchOpMapper(OpMapper):
real_scope_name
=
"/"
.
join
(
name_segments
[
1
:])
self
.
scope_name_list
.
append
(
real_scope_name
)
return
real_scope_name
\ No newline at end of file
x2paddle/op_mapper/dygraph/tf2paddle/tf_op_mapper.py
浏览文件 @
e2b3e7e0
...
...
@@ -248,8 +248,10 @@ class TFOpMapper(OpMapper):
def
Transpose
(
self
,
node
):
input
=
self
.
graph
.
get_input_node
(
node
,
0
)
perm
=
self
.
graph
.
get_input_node
(
node
,
1
)
assert
perm
.
layer_type
==
"Const"
,
"Perm of transpose OP should be Const"
if
perm
.
layer_type
==
"Const"
:
perm
=
perm
.
value
.
tolist
()
else
:
perm
=
self
.
decoder
.
infer_tensor
(
perm
,
use_diff_inputs
=
False
).
tolist
()
self
.
paddle_graph
.
add_layer
(
"paddle.transpose"
,
...
...
@@ -641,12 +643,18 @@ class TFOpMapper(OpMapper):
paddings
=
self
.
graph
.
get_input_node
(
node
,
1
)
assert
paddings
.
layer_type
==
"Const"
,
"Padding should be Const"
paddings
=
paddings
.
value
.
flatten
().
tolist
()
constant_values
=
0
if
len
(
node
.
layer
.
input
)
>
2
:
constant_values
=
self
.
graph
.
get_input_node
(
node
,
2
)
assert
constant_values
.
layer_type
==
"Const"
,
"Padding should be Const"
constant_values
=
constant_values
.
value
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.functional.pad"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
],
pad
=
paddings
)
pad
=
paddings
,
value
=
constant_values
)
def
MirrorPad
(
self
,
node
):
self
.
Pad
(
node
)
...
...
x2paddle/op_mapper/static/tf2paddle/tf_op_mapper.py
浏览文件 @
e2b3e7e0
...
...
@@ -238,8 +238,10 @@ class TFOpMapper(OpMapper):
def
Transpose
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
])
perm
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
])
assert
perm
.
layer_type
==
"Const"
,
"Perm of transpose OP should be Const"
if
perm
.
layer_type
==
"Const"
:
perm
=
perm
.
value
.
tolist
()
else
:
perm
=
self
.
decoder
.
infer_tensor
(
perm
,
use_diff_inputs
=
False
).
tolist
()
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.transpose"
,
...
...
@@ -629,12 +631,18 @@ class TFOpMapper(OpMapper):
paddings
=
self
.
graph
.
get_input_node
(
node
,
1
)
assert
paddings
.
layer_type
==
"Const"
,
"Padding should be Const"
paddings
=
paddings
.
value
.
flatten
().
tolist
()
constant_values
=
0
if
len
(
node
.
layer
.
input
)
>
2
:
constant_values
=
self
.
graph
.
get_input_node
(
node
,
2
)
assert
constant_values
.
layer_type
==
"Const"
,
"Padding should be Const"
constant_values
=
constant_values
.
value
self
.
paddle_graph
.
add_layer
(
kernel
=
"paddle.nn.functional.pad"
,
inputs
=
{
"x"
:
input
.
name
},
outputs
=
[
node
.
name
],
pad
=
paddings
)
pad
=
paddings
,
value
=
constant_values
)
def
MirrorPad
(
self
,
node
):
self
.
Pad
(
node
)
...
...
x2paddle/optimizer/pytorch_code_optimizer/layer_code_generator.py
浏览文件 @
e2b3e7e0
...
...
@@ -27,6 +27,8 @@ NN_KERNEL_NAME = {"paddle.nn.BatchNorm": "bn",
"paddle.nn.Linear"
:
"linear"
,
"paddle.nn.Conv2DTranspose"
:
"conv"
,
"paddle.nn.LSTM"
:
"lstm"
,
"paddle.nn.GRU"
:
"gru"
,
"custom_layer:InstanceNorm"
:
"instance_norm"
,
"paddle.nn.PReLU"
:
"prelu"
,
"paddle.nn.ReLU"
:
"relu"
,
"paddle.nn.ReLU6"
:
"relu"
,
...
...
@@ -35,14 +37,14 @@ NN_KERNEL_NAME = {"paddle.nn.BatchNorm": "bn",
"paddle.nn.Tanh"
:
"tanh"
,
"paddle.nn.AvgPool2D"
:
"avgpool"
,
"paddle.nn.MaxPool2D"
:
"maxpool"
,
"paddle.nn.Pad1D"
:
"pad"
,
"paddle.nn.Pad2D"
:
"pad"
,
"paddle.nn.Pad3D"
:
"pad"
,
"paddle.nn.Pad1D"
:
"pad
1d
"
,
"paddle.nn.Pad2D"
:
"pad
2d
"
,
"paddle.nn.Pad3D"
:
"pad
3d
"
,
"paddle.nn.Dropout"
:
"dropout"
,
"paddle.nn.GELU"
:
"gelu"
,
"paddle.nn.Hardtanh"
:
"tanh"
,
"paddle.nn.LeakyReLU"
:
"leakly_relu"
}
NN_KERNEL_WITH_PARAMS
=
list
(
NN_KERNEL_NAME
.
keys
())[:
8
]
NN_KERNEL_WITH_PARAMS
=
list
(
NN_KERNEL_NAME
.
keys
())[:
10
]
def
rename_layers
(
layers
,
param_tree
=
None
,
is_rename_module
=
False
):
""" 对子模块的输入输出等进行重命名。
...
...
@@ -143,7 +145,10 @@ def _update_attrs(layer, different_attrs):
if
key_name
in
different_attrs
:
common_attrs
.
pop
(
k
)
special_attrs
[
k
]
=
v
remove_default_attrs
(
layer
.
kernel
,
common_attrs
)
remove_kernel
=
layer
.
kernel
if
remove_kernel
==
"custom_layer:InstanceNorm"
:
remove_kernel
=
"paddle.nn.InstanceNorm2D"
remove_default_attrs
(
remove_kernel
,
common_attrs
)
common_attrs
.
update
(
special_attrs
)
layer
.
attrs
=
common_attrs
...
...
x2paddle/optimizer/pytorch_code_optimizer/module_graph.py
浏览文件 @
e2b3e7e0
...
...
@@ -212,6 +212,8 @@ class ModuleGraph(object):
layer_id_list2
=
list
(
sub_layers2
.
keys
())
for
i
,
layer_id1
in
enumerate
(
layer_id_list1
):
layer_id2
=
layer_id_list2
[
i
]
if
layer_id2
not
in
self
.
pd_graph
.
edges_in
:
return
False
if
len
(
self
.
pd_graph
.
edges_in
[
layer_id1
])
!=
len
(
self
.
pd_graph
.
edges_in
[
layer_id2
]):
return
False
for
j
,
ipt_layer_id1
in
enumerate
(
self
.
pd_graph
.
edges_in
[
layer_id1
]):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录