Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
d7242534
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d7242534
编写于
9月 17, 2019
作者:
J
Jason
提交者:
GitHub
9月 17, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #146 from Channingss/develop
supported dynamic scale for resize op
上级
461f4cb4
19a7452f
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
83 addition
and
119 deletion
+83
-119
x2paddle/onnx_infer.py
x2paddle/onnx_infer.py
+0
-1
x2paddle/op_mapper/onnx_op_mapper.py
x2paddle/op_mapper/onnx_op_mapper.py
+83
-118
未找到文件。
x2paddle/onnx_infer.py
浏览文件 @
d7242534
...
...
@@ -44,7 +44,6 @@ def main():
inputs_dict
=
{}
for
i
,
ipt
in
enumerate
(
inputs
):
inputs_dict
[
sess
.
get_inputs
()[
i
].
name
]
=
ipt
res
=
sess
.
run
(
None
,
input_feed
=
inputs_dict
)
for
idx
,
value_info
in
enumerate
(
model
.
graph
.
output
):
np
.
save
(
os
.
path
.
join
(
save_dir
,
value_info
.
name
),
res
[
idx
])
...
...
x2paddle/op_mapper/onnx_op_mapper.py
浏览文件 @
d7242534
...
...
@@ -52,6 +52,14 @@ def get_same_padding(in_size, kernel_size, stride):
class
ONNXOpMapper
(
OpMapper
):
elementwise_ops
=
{
'Add'
:
'elementwise_add'
,
'Div'
:
'elementwise_div'
,
'Sub'
:
'elementwise_sub'
,
'Mul'
:
'elementwise_mul'
,
'Pow'
:
'elementwise_pow'
,
}
def
__init__
(
self
,
decoder
,
save_dir
):
super
(
ONNXOpMapper
,
self
).
__init__
()
self
.
decoder
=
decoder
...
...
@@ -83,6 +91,8 @@ class ONNXOpMapper(OpMapper):
self
.
directly_map
(
node
)
elif
op
in
custom_layers
:
self
.
deal_custom_layer
(
node
)
elif
op
in
self
.
elementwise_ops
:
self
.
elementwise_map
(
node
)
self
.
remove_tmp_data
()
...
...
@@ -91,9 +101,10 @@ class ONNXOpMapper(OpMapper):
for
node_name
in
self
.
graph
.
topo_sort
:
node
=
self
.
graph
.
get_node
(
node_name
)
op
=
node
.
layer_type
if
not
hasattr
(
self
,
op
)
and
op
not
in
default_op_mapping
and
op
not
in
custom_layers
:
if
not
hasattr
(
self
,
op
)
and
\
op
not
in
default_op_mapping
and
\
op
not
in
custom_layers
and
\
op
not
in
self
.
elementwise_ops
:
unsupported_ops
.
add
(
op
)
if
len
(
unsupported_ops
)
==
0
:
return
True
...
...
@@ -131,7 +142,10 @@ class ONNXOpMapper(OpMapper):
"""
get dynamic shape from infer_result
"""
output
=
np
.
load
(
os
.
path
.
join
(
self
.
tmp_data_dir
,
layer
+
'.npy'
))
path
=
os
.
path
.
join
(
self
.
tmp_data_dir
,
layer
+
'.npy'
)
if
not
os
.
path
.
exists
(
path
):
return
[
None
,
None
,
None
]
output
=
np
.
load
(
path
)
return
output
.
tolist
(),
output
.
dtype
,
output
.
shape
def
get_output_shapes
(
self
):
...
...
@@ -147,8 +161,8 @@ class ONNXOpMapper(OpMapper):
for
opt
in
layer
.
output
:
if
opt
in
value_infos
:
value_info
=
value_infos
[
opt
]
if
len
(
value_info
[
'shape'
]
)
==
0
or
value_info
[
'dtype'
]
is
None
:
if
len
(
value_info
[
'shape'
]
)
==
0
or
value_info
[
'dtype'
]
is
None
or
0
in
value_info
[
'shape'
]
:
if
self
.
is_inference
==
False
:
self
.
get_results_of_inference
(
onnx_model
,
value_infos
,
...
...
@@ -246,6 +260,48 @@ class ONNXOpMapper(OpMapper):
self
.
used_custom_layers
[
op
+
'_child_func'
]
=
child_func_code
def
elementwise_map
(
self
,
node
):
assert
node
.
layer_type
in
self
.
elementwise_ops
op_type
=
self
.
elementwise_ops
[
node
.
layer_type
]
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
if
len
(
val_x
.
out_shapes
[
0
])
<
len
(
val_y
.
out_shapes
[
0
]):
val_x
,
val_y
=
val_y
,
val_x
val_y_shape
=
val_y
.
out_shapes
[
0
]
val_x_shape
=
val_x
.
out_shapes
[
0
]
slice_idx
=
0
for
dim
in
val_y_shape
:
if
dim
==
1
:
slice_idx
+=
1
else
:
break
attr
=
{
"name"
:
string
(
node
.
layer_name
)}
if
slice_idx
<
len
(
val_y_shape
)
and
slice_idx
>
0
:
val_y_reshaped
=
val_y_shape
[
slice_idx
:]
var_y_reshaped
=
val_y
.
layer_name
+
'_reshaped'
attr_reshaped
=
{
'shape'
:
val_y_reshaped
,
'name'
:
string
(
var_y_reshaped
)
}
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
val_y
,
output
=
var_y_reshaped
,
param_attr
=
attr_reshaped
)
inputs
=
{
'x'
:
val_x
,
'y'
:
var_y_reshaped
}
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
else
:
inputs
=
{
'x'
:
val_x
,
'y'
:
val_y
}
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
def
place_holder
(
self
,
node
):
self
.
input_shapes
.
append
(
node
.
out_shapes
[
0
])
attr
=
{
...
...
@@ -322,7 +378,16 @@ class ONNXOpMapper(OpMapper):
out_shape_
=
[
in_shape
[
2
]
*
scale
,
in_shape
[
3
]
*
scale
]
mode
=
node
.
get_attr
(
'mode'
,
'nearest'
)
fluid_op
=
'resize_{}'
.
format
(
mode
)
if
'linear'
in
mode
:
print
(
'Warnning: paddle not support resize wiht mode: linear, we use bilinear replace linear'
)
fluid_op
=
'resize_bilinear'
if
isinstance
(
val_scales
,
ONNXGraphNode
):
scale
,
_
,
_
=
self
.
get_dynamic_shape
(
val_scales
.
layer_name
)
attr
=
{
'scale'
:
scale
,
...
...
@@ -384,6 +449,13 @@ class ONNXOpMapper(OpMapper):
def
Unsqueeze
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
axes
=
node
.
get_attr
(
'axes'
)
if
len
(
val_x
.
out_shapes
[
0
])
==
0
:
node
.
fluid_code
.
add_layer
(
'assign'
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
None
)
else
:
attr
=
{
'axes'
:
axes
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
'unsqueeze'
,
inputs
=
val_x
,
...
...
@@ -773,45 +845,6 @@ class ONNXOpMapper(OpMapper):
output
=
node
,
param_attr
=
attr
)
def
Add
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
inputs
=
{
"x"
:
val_x
,
"y"
:
val_y
,
}
attr
=
{
"name"
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
def
Sub
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
inputs
=
{
"x"
:
val_x
,
"y"
:
val_y
,
}
attr
=
{
"name"
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"elementwise_sub"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
def
Pow
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
inputs
=
{
"x"
:
val_x
,
"y"
:
val_y
,
}
attr
=
{
"name"
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"elementwise_pow"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
def
Sum
(
self
,
node
):
val_inps
=
node
.
layer
.
input
inputs
=
{
...
...
@@ -883,74 +916,6 @@ class ONNXOpMapper(OpMapper):
output
=
node
,
param_attr
=
attr
)
def
Mul
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_y_shape
=
val_y
.
out_shapes
[
0
]
slice_idx
=
0
for
dim
in
val_y_shape
:
if
dim
==
1
:
slice_idx
+=
1
else
:
break
attr
=
{
"name"
:
string
(
node
.
layer_name
)}
if
slice_idx
<
len
(
val_y_shape
)
and
slice_idx
>
0
:
val_y_reshaped
=
val_y_shape
[
slice_idx
:]
var_y_reshaped
=
val_y
.
layer_name
+
'_reshaped'
attr_reshaped
=
{
'shape'
:
val_y_reshaped
,
'name'
:
string
(
var_y_reshaped
)
}
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
val_y
,
output
=
var_y_reshaped
,
param_attr
=
attr_reshaped
)
inputs
=
{
'x'
:
val_x
,
'y'
:
var_y_reshaped
}
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
else
:
inputs
=
{
'x'
:
val_x
,
'y'
:
val_y
}
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
def
Div
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_y_shape
=
val_y
.
out_shapes
[
0
]
slice_idx
=
0
for
dim
in
val_y_shape
:
if
dim
==
1
:
slice_idx
+=
1
else
:
break
attr
=
{
"name"
:
string
(
node
.
layer_name
)}
if
slice_idx
<
len
(
val_y_shape
)
and
slice_idx
>
0
:
val_y_reshaped
=
val_y_shape
[
slice_idx
:]
var_y_reshaped
=
val_y
.
layer_name
+
'_reshaped'
attr_reshaped
=
{
'shape'
:
val_y_reshaped
,
'name'
:
string
(
var_y_reshaped
)
}
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
val_y
,
output
=
var_y_reshaped
,
param_attr
=
attr_reshaped
)
inputs
=
{
'x'
:
val_x
,
'y'
:
var_y_reshaped
}
node
.
fluid_code
.
add_layer
(
"elementwise_div"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
else
:
inputs
=
{
'x'
:
val_x
,
'y'
:
val_y
}
node
.
fluid_code
.
add_layer
(
"elementwise_div"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
def
Relu
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
attr
=
{
"name"
:
string
(
node
.
layer_name
)}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录