Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
d1cda02c
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d1cda02c
编写于
11月 22, 2019
作者:
J
Jason
提交者:
GitHub
11月 22, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #205 from Channingss/develop
add some ops
上级
f4d45203
930f6025
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
390 addition
and
21 deletion
+390
-21
op_list.md
op_list.md
+2
-1
x2paddle/op_mapper/onnx_directly_map.py
x2paddle/op_mapper/onnx_directly_map.py
+2
-0
x2paddle/op_mapper/onnx_op_mapper.py
x2paddle/op_mapper/onnx_op_mapper.py
+386
-20
未找到文件。
op_list.md
浏览文件 @
d1cda02c
...
@@ -49,4 +49,5 @@
...
@@ -49,4 +49,5 @@
| 37 | Ceil | 38 | Concat | 39 | Flatten | 40 | ConvTranspose |
| 37 | Ceil | 38 | Concat | 39 | Flatten | 40 | ConvTranspose |
| 41 | MatMul | 42 | Sum | 43 | Transpose | 44 | BatchNormalization |
| 41 | MatMul | 42 | Sum | 43 | Transpose | 44 | BatchNormalization |
| 45 | Squeeze | 46 | Equal | 47 | Identity | 48 | GlobalAveragePool |
| 45 | Squeeze | 46 | Equal | 47 | Identity | 48 | GlobalAveragePool |
| 49 | MaxPool | 50 | Conv | 51 | Gemm |
| 49 | MaxPool | 50 | Conv | 51 | Gemm | 52 | NonZero |
| 53 | Abs | 54 | Floor |
x2paddle/op_mapper/onnx_directly_map.py
浏览文件 @
d1cda02c
...
@@ -77,6 +77,8 @@ default_op_mapping = {
...
@@ -77,6 +77,8 @@ default_op_mapping = {
'Softmax'
:
[
'softmax'
,
[
'X'
],
[
'Out'
],
'Softmax'
:
[
'softmax'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
axis
=
1
)],
dict
(),
dict
(
axis
=
1
)],
'Sqrt'
:
[
'sqrt'
,
[
'X'
],
[
'Out'
]],
'Sqrt'
:
[
'sqrt'
,
[
'X'
],
[
'Out'
]],
'Floor'
:
[
'floor'
,
[
'X'
],
[
'Out'
]],
'Abs'
:
[
'abs'
,
[
'X'
],
[
'Out'
]],
}
}
default_ioa_constraint
=
{
default_ioa_constraint
=
{
...
...
x2paddle/op_mapper/onnx_op_mapper.py
浏览文件 @
d1cda02c
...
@@ -31,12 +31,13 @@ from collections import OrderedDict as _dict
...
@@ -31,12 +31,13 @@ from collections import OrderedDict as _dict
import
math
import
math
import
os
import
os
import
shutil
import
shutil
from
functools
import
reduce
_logger
=
_logging
.
getLogger
(
__name__
)
_logger
=
_logging
.
getLogger
(
__name__
)
def
_const_weight_or_none
(
node
):
def
_const_weight_or_none
(
node
):
if
'Constant'
in
node
.
layer_
nam
e
:
if
'Constant'
in
node
.
layer_
typ
e
:
return
node
.
value
return
node
.
value
if
isinstance
(
node
,
ONNXGraphDataNode
):
if
isinstance
(
node
,
ONNXGraphDataNode
):
return
node
.
weight
return
node
.
weight
...
@@ -121,8 +122,13 @@ class ONNXOpMapper(OpMapper):
...
@@ -121,8 +122,13 @@ class ONNXOpMapper(OpMapper):
for
data_node
in
data_nodes
:
for
data_node
in
data_nodes
:
value_info
=
value_infos
[
data_node
]
value_info
=
value_infos
[
data_node
]
ipt
=
np
.
random
.
random
(
value_info
[
'shape'
]).
astype
(
shape
=
value_info
[
'shape'
]
value_info
[
'dtype'
])
for
i
,
dim_shape
in
enumerate
(
shape
):
if
dim_shape
==
0
and
i
==
0
:
shape
[
i
]
=
1
if
dim_shape
==
0
and
i
!=
0
:
assert
'shape of input is not assigned'
ipt
=
np
.
random
.
random
(
shape
).
astype
(
value_info
[
'dtype'
])
np
.
save
(
os
.
path
.
join
(
self
.
tmp_data_dir
,
data_node
),
ipt
)
np
.
save
(
os
.
path
.
join
(
self
.
tmp_data_dir
,
data_node
),
ipt
)
model
=
onnx
.
shape_inference
.
infer_shapes
(
model
)
model
=
onnx
.
shape_inference
.
infer_shapes
(
model
)
...
@@ -306,9 +312,16 @@ class ONNXOpMapper(OpMapper):
...
@@ -306,9 +312,16 @@ class ONNXOpMapper(OpMapper):
def
place_holder
(
self
,
node
):
def
place_holder
(
self
,
node
):
self
.
input_shapes
.
append
(
node
.
out_shapes
[
0
])
self
.
input_shapes
.
append
(
node
.
out_shapes
[
0
])
shape
=
node
.
out_shapes
[
0
]
for
i
,
dim_shape
in
enumerate
(
shape
):
if
dim_shape
==
0
and
i
==
0
:
shape
[
i
]
=
1
if
dim_shape
==
0
and
i
!=
0
:
assert
'shape of input is not assigned'
attr
=
{
attr
=
{
"dtype"
:
string
(
node
.
dtype
),
"dtype"
:
string
(
node
.
dtype
),
"shape"
:
node
.
out_shapes
[
0
]
,
"shape"
:
shape
,
"name"
:
string
(
node
.
layer_name
),
"name"
:
string
(
node
.
layer_name
),
"append_batch_size"
:
'False'
"append_batch_size"
:
'False'
}
}
...
@@ -406,6 +419,47 @@ class ONNXOpMapper(OpMapper):
...
@@ -406,6 +419,47 @@ class ONNXOpMapper(OpMapper):
output
=
node
,
output
=
node
,
param_attr
=
attr
)
param_attr
=
attr
)
def
RoiAlign
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_rois
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
pooled_height
=
node
.
get_attr
(
'output_height'
)
pooled_width
=
node
.
get_attr
(
'output_width'
)
spatial_scale
=
node
.
get_attr
(
'spatial_scale'
)
sampling_ratio
=
node
.
get_attr
(
'sampling_ratio'
)
attr
=
{
'pooled_height'
:
pooled_height
,
'pooled_width'
:
pooled_width
,
'spatial_scale'
:
spatial_scale
,
'sampling_ratio'
:
sampling_ratio
,
}
node
.
fluid_code
.
add_layer
(
'roi_align'
,
inputs
=
{
'input'
:
val_x
,
'rois'
:
val_rois
},
output
=
node
,
param_attr
=
attr
)
def
MaxRoiPool
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_rois
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
spatial_scale
=
node
.
get_attr
(
'spatial_scale'
)
pooled_height
,
pooled_width
=
node
.
get_attr
(
'pooled_shape'
)
attr
=
{
'pooled_height'
:
pooled_height
,
'pooled_width'
:
pooled_width
,
'spatial_scale'
:
spatial_scale
,
}
node
.
fluid_code
.
add_layer
(
'roi_pool'
,
inputs
=
{
'input'
:
val_x
,
'rois'
:
val_rois
},
output
=
node
,
param_attr
=
attr
)
def
Pad
(
self
,
node
,
op_independent
=
True
):
def
Pad
(
self
,
node
,
op_independent
=
True
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
pads
=
node
.
get_attr
(
'pads'
)
pads
=
node
.
get_attr
(
'pads'
)
...
@@ -633,22 +687,23 @@ class ONNXOpMapper(OpMapper):
...
@@ -633,22 +687,23 @@ class ONNXOpMapper(OpMapper):
def
Slice
(
self
,
node
):
def
Slice
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_starts
,
val_ends
,
val_axes
,
val_
steps
=
None
,
None
,
None
,
None
starts
,
ends
,
axes
,
steps
=
None
,
None
,
None
,
None
if
len
(
node
.
inputs
)
>
1
:
if
len
(
node
.
inputs
)
>
1
:
starts
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
starts
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
ends
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
ends
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
axes
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
if
len
(
node
.
inputs
)
>
3
:
steps
=
self
.
graph
.
get_input_node
(
node
,
idx
=
4
,
copy
=
True
)
axes
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
self
.
omit_nodes
.
append
(
axes
.
layer_name
)
axes
=
_const_weight_or_none
(
axes
)
if
len
(
node
.
inputs
)
>
4
:
steps
=
self
.
graph
.
get_input_node
(
node
,
idx
=
4
,
copy
=
True
)
self
.
omit_nodes
.
append
(
steps
.
layer_name
)
steps
=
_const_weight_or_none
(
steps
)
self
.
omit_nodes
.
append
(
starts
.
layer_name
)
self
.
omit_nodes
.
append
(
starts
.
layer_name
)
self
.
omit_nodes
.
append
(
ends
.
layer_name
)
self
.
omit_nodes
.
append
(
ends
.
layer_name
)
self
.
omit_nodes
.
append
(
axes
.
layer_name
)
starts
=
_const_weight_or_none
(
starts
)
self
.
omit_nodes
.
append
(
steps
.
layer_name
)
ends
=
_const_weight_or_none
(
ends
)
starts
=
_const_weight_or_none
(
starts
).
copy
()
ends
=
_const_weight_or_none
(
ends
).
copy
()
axes
=
_const_weight_or_none
(
axes
)
steps
=
_const_weight_or_none
(
steps
)
else
:
else
:
starts
=
node
.
get_attr
(
'starts'
)
starts
=
node
.
get_attr
(
'starts'
)
ends
=
node
.
get_attr
(
'ends'
)
ends
=
node
.
get_attr
(
'ends'
)
...
@@ -738,6 +793,7 @@ class ONNXOpMapper(OpMapper):
...
@@ -738,6 +793,7 @@ class ONNXOpMapper(OpMapper):
attr
[
'actual_shape'
]
=
val_shape_cast
attr
[
'actual_shape'
]
=
val_shape_cast
else
:
else
:
attr
[
'actual_shape'
]
=
val_shape
attr
[
'actual_shape'
]
=
val_shape
if
shape
is
None
:
if
shape
is
None
:
shape
=
val_reshaped
.
out_shapes
[
0
]
shape
=
val_reshaped
.
out_shapes
[
0
]
...
@@ -986,10 +1042,116 @@ class ONNXOpMapper(OpMapper):
...
@@ -986,10 +1042,116 @@ class ONNXOpMapper(OpMapper):
output
=
node
,
output
=
node
,
param_attr
=
attr
)
param_attr
=
attr
)
def
Equal
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
node
.
fluid_code
.
add_layer
(
"equal"
,
inputs
=
{
'x'
:
val_x
,
'y'
:
val_y
},
output
=
node
,
param_attr
=
None
)
def
Where
(
self
,
node
):
condition
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
not_condition
=
condition
.
layer_name
+
'_not'
node
.
fluid_code
.
add_layer
(
"logical_not"
,
inputs
=
condition
,
output
=
not_condition
,
param_attr
=
None
)
cast_not_condition
=
not_condition
+
'_cast'
node
.
fluid_code
.
add_layer
(
"cast"
,
inputs
=
not_condition
,
output
=
cast_not_condition
,
param_attr
=
{
'dtype'
:
string
(
val_x
.
dtype
)})
cast_condition
=
condition
.
layer_name
+
'_cast'
node
.
fluid_code
.
add_layer
(
"cast"
,
inputs
=
condition
,
output
=
cast_condition
,
param_attr
=
{
'dtype'
:
string
(
val_x
.
dtype
)})
mul_val_x
=
val_x
.
layer_name
+
'_mul'
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
{
'x'
:
val_x
,
'y'
:
cast_condition
},
output
=
mul_val_x
,
param_attr
=
None
)
mul_val_y
=
val_y
.
layer_name
+
'_mul'
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
{
'x'
:
val_y
,
'y'
:
cast_not_condition
},
output
=
mul_val_y
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
{
'x'
:
mul_val_x
,
'y'
:
mul_val_y
},
output
=
node
,
param_attr
=
None
)
def
NonZero
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
where_name
=
node
.
layer_name
+
'_where'
node
.
fluid_code
.
add_layer
(
"where"
,
inputs
=
val_x
.
layer_name
+
'==1'
,
output
=
where_name
)
dims
=
len
(
val_x
.
out_shapes
[
0
])
elements_count_val_x
=
reduce
(
lambda
x
,
y
:
x
*
y
,
val_x
.
out_shapes
[
0
])
flatten_names
=
[]
for
dim
in
range
(
dims
):
slice_name
=
node
.
layer_name
+
'_slice'
+
str
(
dim
)
flatten_name
=
node
.
layer_name
+
'_flatten'
+
str
(
dim
)
flatten_names
.
append
(
flatten_name
)
attr
=
{
'axes'
:
list
(
range
(
dims
)),
'starts'
:
[
0
,
dim
],
'ends'
:
[
elements_count_val_x
,
dim
+
1
]
}
node
.
fluid_code
.
add_layer
(
"slice"
,
inputs
=
where_name
,
output
=
slice_name
,
param_attr
=
attr
)
node
.
fluid_code
.
add_layer
(
"flatten"
,
inputs
=
slice_name
,
output
=
flatten_name
,
param_attr
=
{
'axis'
:
0
})
node
.
fluid_code
.
add_layer
(
"concat"
,
inputs
=
flatten_names
,
output
=
node
,
param_attr
=
{
'axis'
:
0
})
def
Identity
(
self
,
node
):
def
Identity
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
node
.
fluid_code
.
add_layer
(
"assign"
,
inputs
=
val_x
,
output
=
node
)
node
.
fluid_code
.
add_layer
(
"assign"
,
inputs
=
val_x
,
output
=
node
)
def
Tile
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_repeats
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
repeats
=
_const_weight_or_none
(
val_repeats
)
assert
repeats
is
not
None
,
'for OP:Tile, only const repeats supported'
if
isinstance
(
repeats
,
int
):
repeats
=
[
repeats
]
attr
=
{
'expand_times'
:
repeats
,
"name"
:
string
(
node
.
layer_name
),
}
node
.
fluid_code
.
add_layer
(
"expand"
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
def
MaxPool
(
self
,
node
):
def
MaxPool
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
...
@@ -1030,7 +1192,7 @@ class ONNXOpMapper(OpMapper):
...
@@ -1030,7 +1192,7 @@ class ONNXOpMapper(OpMapper):
output
=
node
,
output
=
node
,
param_attr
=
attr
)
param_attr
=
attr
)
def
GlobalAverageP
ool
(
self
,
node
):
def
_global_p
ool
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
input_shape
=
val_x
.
out_shapes
[
0
]
input_shape
=
val_x
.
out_shapes
[
0
]
...
@@ -1042,8 +1204,15 @@ class ONNXOpMapper(OpMapper):
...
@@ -1042,8 +1204,15 @@ class ONNXOpMapper(OpMapper):
poolnd
=
len
(
output_shape
)
-
2
# NC...
poolnd
=
len
(
output_shape
)
-
2
# NC...
assert
2
<=
poolnd
<=
3
,
'only pool2d and pool3d is supported'
assert
2
<=
poolnd
<=
3
,
'only pool2d and pool3d is supported'
fluid_op
=
'pool{}d'
.
format
(
poolnd
)
fluid_op
=
'pool{}d'
.
format
(
poolnd
)
pool_type
=
None
if
node
.
layer
.
op_type
==
'GlobalMaxPool'
:
pool_type
=
'max'
elif
node
.
layer
.
op_type
==
'GlobalAveragePool'
:
pool_type
=
'avg'
attr
=
{
attr
=
{
"pool_type"
:
string
(
"avg"
),
"pool_type"
:
string
(
pool_type
),
"global_pooling"
:
True
,
"global_pooling"
:
True
,
"name"
:
string
(
node
.
layer_name
)
"name"
:
string
(
node
.
layer_name
)
}
}
...
@@ -1052,6 +1221,12 @@ class ONNXOpMapper(OpMapper):
...
@@ -1052,6 +1221,12 @@ class ONNXOpMapper(OpMapper):
output
=
node
,
output
=
node
,
param_attr
=
attr
)
param_attr
=
attr
)
def
GlobalMaxPool
(
self
,
node
):
self
.
_global_pool
(
node
)
def
GlobalAveragePool
(
self
,
node
):
self
.
_global_pool
(
node
)
def
Conv
(
self
,
node
):
def
Conv
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_w
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_w
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
...
@@ -1108,10 +1283,11 @@ class ONNXOpMapper(OpMapper):
...
@@ -1108,10 +1283,11 @@ class ONNXOpMapper(OpMapper):
def
ConvTranspose
(
self
,
node
):
def
ConvTranspose
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_w
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_w
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
val_b
=
None
if
len
(
node
.
layer
.
input
)
>
2
:
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
self
.
omit_nodes
.
append
(
val_b
.
layer_name
)
self
.
omit_nodes
.
append
(
val_w
.
layer_name
)
self
.
omit_nodes
.
append
(
val_w
.
layer_name
)
self
.
omit_nodes
.
append
(
val_b
.
layer_name
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
...
@@ -1149,10 +1325,200 @@ class ONNXOpMapper(OpMapper):
...
@@ -1149,10 +1325,200 @@ class ONNXOpMapper(OpMapper):
'dilation'
:
dilations
,
'dilation'
:
dilations
,
'groups'
:
num_groups
,
'groups'
:
num_groups
,
'param_attr'
:
string
(
val_w
.
layer_name
),
'param_attr'
:
string
(
val_w
.
layer_name
),
'bias_attr'
:
string
(
val_b
.
layer_name
),
'bias_attr'
:
None
if
val_b
is
None
else
string
(
val_b
.
layer_name
),
'name'
:
string
(
node
.
layer_name
),
'name'
:
string
(
node
.
layer_name
),
}
}
node
.
fluid_code
.
add_layer
(
fluid_op
,
node
.
fluid_code
.
add_layer
(
fluid_op
,
inputs
=
val_x
,
inputs
=
val_x
,
output
=
node
,
output
=
node
,
param_attr
=
attr
)
param_attr
=
attr
)
def
GRU
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_w
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_r
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
val_b
=
None
val_len
=
None
val_xh
=
None
miss_arg_num
=
0
num_ipt
=
len
(
node
.
layer
.
input
)
if
num_ipt
>
3
and
node
.
layer
.
input
[
3
]
!=
''
:
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
else
:
miss_arg_num
+=
1
if
num_ipt
>
4
and
node
.
layer
.
input
[
4
]
!=
''
:
val_len
=
self
.
graph
.
get_input_node
(
node
,
idx
=
4
-
miss_arg_num
,
copy
=
True
)
else
:
miss_arg_num
+=
1
if
num_ipt
>
5
and
node
.
layer
.
input
[
5
]
!=
''
:
val_xh
=
self
.
graph
.
get_input_node
(
node
,
idx
=
5
-
miss_arg_num
,
copy
=
True
)
data
,
dtype
,
shape
=
self
.
get_dynamic_shape
(
val_x
.
layer_name
)
x_shape
=
val_x
.
out_shapes
[
0
]
assert
x_shape
[
1
]
==
1
,
'only X with batch_size = 1 supported'
assert
node
.
get_attr
(
'clip'
,
None
)
is
None
,
'clipping not supported'
hidden_size
=
node
.
get_attr
(
'hidden_size'
,
None
)
if
hidden_size
is
None
:
r_shape
=
val_r
.
out_shapes
[
0
]
if
r_shape
:
hidden_size
=
r_shape
[
-
1
]
if
hidden_size
is
None
:
w_shape
=
var_w
.
out_shapes
[
0
]
if
w_shape
:
hidden_size
=
w_shape
[
-
2
]
//
3
if
hidden_size
is
None
and
val_b
:
b_shape
=
val_b
.
out_shapes
[
0
]
if
b_shape
:
hidden_size
=
b_shape
[
-
1
]
//
6
if
hidden_size
is
None
and
val_xh
:
xh_shape
=
val_xh
.
out_shapes
[
0
]
if
xh_shape
:
hidden_size
=
xh_shape
[
-
1
]
direction
=
node
.
get_attr
(
'direction'
,
'forward'
)
assert
direction
!=
'bidirectional'
,
'direction = bidirectional not supported'
activations
=
node
.
get_attr
(
'activations'
,
[
'Sigmoid'
,
'Tanh'
])
assert
len
(
activations
)
==
2
,
'bidirectional operation not supported'
assert
node
.
get_attr
(
'linear_before_reset'
,
0
)
==
0
,
'only linear_before_reset = 0 supported'
activations
=
[
s
.
lower
()
for
s
in
activations
]
gate_activation
,
candidate_activation
=
activations
is_reverse
=
direction
==
'reverse'
var_x0
=
node
.
layer_name
+
'_x0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
val_x
,
output
=
var_x0
,
param_attr
=
{
'axes'
:
[
1
],
'name'
:
string
(
var_x0
)
})
var_w0
=
node
.
layer_name
+
'_w0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
val_w
,
output
=
var_w0
,
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_w0
)
})
var_fc
=
node
.
layer_name
+
'_fc'
var_mm
=
(
node
.
layer_name
+
'_mm'
)
if
val_b
else
var_fc
node
.
fluid_code
.
add_layer
(
'matmul'
,
inputs
=
{
'x'
:
var_x0
,
'y'
:
var_w0
},
output
=
var_mm
,
param_attr
=
{
'transpose_x'
:
0
,
'transpose_y'
:
1
,
'name'
:
string
(
var_mm
)
})
var_r0
=
node
.
layer_name
+
'_r0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
val_r
,
output
=
var_r0
,
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_r0
)
})
var_r0t
=
node
.
layer_name
+
'_r0t'
node
.
fluid_code
.
add_layer
(
'transpose'
,
inputs
=
var_r0
,
output
=
var_r0t
,
param_attr
=
{
'perm'
:
[
1
,
0
],
'name'
:
string
(
var_r0t
)
})
if
val_b
:
var_bi
=
node
.
layer_name
+
'_bi'
var_bh
=
node
.
layer_name
+
'_bh'
node
.
fluid_code
.
add_layer
(
'split'
,
inputs
=
val_b
,
output
=
var_bi
+
','
+
var_bh
,
param_attr
=
{
'axis'
:
1
,
'split'
:
[
hidden_size
*
3
,
hidden_size
*
3
],
'name'
:
string
(
node
.
layer_name
+
'.b/split'
)
})
var_bi0
=
node
.
layer_name
+
'_bi0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
var_bi
,
output
=
var_bi0
,
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_bi0
)
})
node
.
fluid_code
.
add_layer
(
'elmentwise_add'
,
inputs
=
[
var_mm
,
var_bi0
],
output
=
var_fc
,
param_attr
=
{
'axes'
:
1
,
'name'
:
string
(
node
.
layer_name
+
'.i/bias'
)
})
if
val_xh
:
var_xh0
=
node
.
layer_name
+
'_xh0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
val_xh
,
output
=
var_xh0
,
param_attr
=
{
'axes'
:
[
1
],
'name'
:
string
(
var_xh0
)
})
var_y00
=
node
.
layer_name
+
'_y00'
attr
=
{
'origin_mode'
:
True
,
'h_0'
:
var_xh0
if
val_xh
else
None
,
'is_reverse'
:
is_reverse
,
'gate_activation'
:
string
(
gate_activation
),
'candidate_activation'
:
string
(
candidate_activation
),
'param_attr'
:
string
(
var_r0t
),
'bias_attr'
:
string
(
var_bh
)
if
val_b
else
False
,
}
node
.
fluid_code
.
add_layer
(
'dynamic_gru'
,
inputs
=
var_fc
+
','
+
str
(
hidden_size
),
output
=
var_y00
,
param_attr
=
attr
)
num_opt
=
len
(
node
.
layer
.
output
)
if
num_opt
>
0
and
node
.
layer
.
output
[
0
]
!=
''
:
node
.
fluid_code
.
add_layer
(
'unsqueeze'
,
inputs
=
var_y00
,
output
=
node
.
layer
.
output
[
0
],
param_attr
=
{
'axes'
:
[
1
,
1
],
'name'
:
string
(
node
.
layer
.
output
[
0
])
})
if
num_opt
>
1
and
node
.
layer
.
output
[
1
]
!=
''
:
node
.
fluid_code
.
add_layer
(
'unsqueeze'
,
inputs
=
var_y00
,
output
=
node
.
layer
.
output
[
1
],
param_attr
=
{
'axes'
:
[
1
,
1
],
'name'
:
string
(
node
.
layer
.
output
[
1
])
})
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录