Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
cdaa32d5
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cdaa32d5
编写于
11月 25, 2020
作者:
S
SunAhong1993
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove comment
上级
097fe706
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
1 addition
and
93 deletion
+1
-93
x2paddle/decoder/tf_decoder.py
x2paddle/decoder/tf_decoder.py
+1
-93
未找到文件。
x2paddle/decoder/tf_decoder.py
浏览文件 @
cdaa32d5
...
...
@@ -489,95 +489,3 @@ class TFDecoder(object):
else
:
raise
Exception
(
"Couldn't infer a stable shape shape tensor value"
)
\ No newline at end of file
# def infer_tensor(self, graph_node):
# if hasattr(graph_node, "index"):
# tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
# else:
# tensor_name = graph_node.layer.name + ":0"
# feed = dict()
# for input_name, info in self.inputs_info.items():
# (shape, dtype) = cp.deepcopy(info)
# input_tensor = self.sess.graph.get_tensor_by_name(input_name + ":0")
# if shape.count(-1) > 0:
# shape[shape.index(-1)] = 2
# feed[input_tensor] = numpy.random.random_sample(shape)
# output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
# return self.sess.run([output_tensor], feed)[0]
# def infer_shape_tensor(self, graph_node, out_shape=None):
# if hasattr(graph_node, "index"):
# tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
# else:
# tensor_name = graph_node.layer.name + ":0"
# feed = dict()
# batch_size = [2, 3, 5]
# results = list()
# for b in batch_size:
# for input_name, info in self.inputs_info.items():
# (shape, dtype) = cp.deepcopy(info)
# input_tensor = self.sess.graph.get_tensor_by_name(input_name +
# ":0")
# if shape.count(-1) > 0:
# shape[shape.index(-1)] = b
# feed[input_tensor] = numpy.random.random_sample(shape)
# output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
# results.append(self.sess.run([output_tensor], feed)[0].flatten())
# compare01 = (results[0] == results[1])
# compare12 = (results[1] == results[2])
# if compare01.all() and compare12.all():
# return results[0].tolist()
# if (compare01 == compare12).all():
# index = numpy.argwhere(compare01 == False).flatten()
# if index.shape[0] != 1:
# raise Exception("There's not only one unstable dimension")
# results[0][index[0]] = -1
# index = numpy.argwhere(results[0] < 0).flatten()
# if index.shape[0] > 2:
# print("Warning: More than two dimension less than zero")
# if index.shape[0] == 2 and out_shape is not None:
# if out_shape[index[1]] > 0:
# results[0][index[1]] = out_shape[index[1]]
# else:
# results[0][index[0]] = out_shape[index[0]]
# return results[0].tolist()
# else:
# raise Exception("Couldn't infer a stable shape shape tensor value")
# def infer_tensor_shape(self, graph_node):
# if hasattr(graph_node, "index"):
# tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
# else:
# tensor_name = graph_node.layer.name + ":0"
# feed = dict()
# batch_size = [2, 3, 5]
# shapes = list()
# for b in batch_size:
# for input_name, info in self.inputs_info.items():
# (shape, dtype) = cp.deepcopy(info)
# input_tensor = self.sess.graph.get_tensor_by_name(input_name +
# ":0")
# if shape.count(-1) > 0:
# shape[shape.index(-1)] = b
# feed[input_tensor] = numpy.random.random_sample(shape)
# output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
# shape = self.sess.run([output_tensor], feed)[0].shape
# shapes.append(numpy.array(shape))
# compare01 = (shapes[0] == shapes[1])
# compare12 = (shapes[1] == shapes[2])
# if compare01.all() and compare12.all():
# return shape[0].tolist()
# if (compare01 == compare12).all():
# index = numpy.argwhere(compare01 == False).flatten()
# if index.shape[0] != 1:
# raise Exception("There's not only one unstable dimension")
# if index[0] != 0:
# raise Exception("Batch size not in the first dimension")
# shapes[0][0] = -1
# return shapes[0].tolist()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录