未验证 提交 ca33e9fa 编写于 作者: J Jason 提交者: GitHub

Merge pull request #278 from Channingss/develop

add OP:Greater, ReduceMax
......@@ -54,6 +54,11 @@ default_op_mapping = {
dict(axes='dim', keepdims='keep_dim'),
dict(keep_dim=1)
],
'ReduceMax': [
'reduce_max', ['X'], ['Out'],
dict(axes='dim', keepdims='keep_dim'),
dict(keep_dim=1)
],
#active function
'Relu': ['relu', ['X'], ['Out']],
'LeakyRelu': ['leaky_relu', ['X'], ['Out'],
......@@ -83,6 +88,6 @@ default_op_mapping = {
}
default_ioa_constraint = {
'Gather':
[(lambda i, o, a: a.get('axis', 0) == 0, 'only axis = 0 is supported')],
'Gather': [(lambda i, o, a: a.get('axis', 0) == 0,
'only axis = 0 is supported')],
}
......@@ -246,10 +246,8 @@ class ONNXOpMapper(OpMapper):
assert len(val_inps) == 1, 'directly_map error with multi inputs'
if fluid_op not in ['shape']:
attr['name'] = string(node.layer_name)
node.fluid_code.add_layer(fluid_op,
inputs=val_inps[0],
output=val_outs[0],
param_attr=attr)
node.fluid_code.add_layer(
fluid_op, inputs=val_inps[0], output=val_outs[0], param_attr=attr)
def deal_custom_layer(self, node):
op = node.layer_type
......@@ -258,11 +256,12 @@ class ONNXOpMapper(OpMapper):
params = get_params(node.layer, node.layer_type)
arg_names, kwargs = set_args(func, params)
kwargs['name'] = string(node.layer_name)
node.fluid_code.add_layer(func.__code__.co_name,
inputs=node.inputs,
output=node,
param_attr=kwargs,
is_custom_layer=True)
node.fluid_code.add_layer(
func.__code__.co_name,
inputs=node.inputs,
output=node,
param_attr=kwargs,
is_custom_layer=True)
if op not in self.used_custom_layers:
self.used_custom_layers[op] = custom_code
if op + '_child_func' not in self.used_custom_layers:
......@@ -299,21 +298,18 @@ class ONNXOpMapper(OpMapper):
'shape': val_y_reshaped,
'name': string(var_y_reshaped)
}
node.fluid_code.add_layer('reshape',
inputs=val_y,
output=var_y_reshaped,
param_attr=attr_reshaped)
node.fluid_code.add_layer(
'reshape',
inputs=val_y,
output=var_y_reshaped,
param_attr=attr_reshaped)
inputs = {'x': val_x, 'y': var_y_reshaped}
node.fluid_code.add_layer(op_type,
inputs=inputs,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
op_type, inputs=inputs, output=node, param_attr=attr)
else:
inputs = {'x': val_x, 'y': val_y}
node.fluid_code.add_layer(op_type,
inputs=inputs,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
op_type, inputs=inputs, output=node, param_attr=attr)
def place_holder(self, node):
self.input_shapes.append(node.out_shapes[0])
......@@ -331,10 +327,8 @@ class ONNXOpMapper(OpMapper):
"append_batch_size": 'False'
}
node.fluid_code.add_layer("data",
inputs=None,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"data", inputs=None, output=node, param_attr=attr)
def create_parameter(self, node, parameter=None):
if parameter is not None:
......@@ -351,10 +345,8 @@ class ONNXOpMapper(OpMapper):
'attr': string(node.layer_name),
'default_initializer': 'Constant(0.0)'
}
node.fluid_code.add_layer("create_parameter",
inputs=None,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"create_parameter", inputs=None, output=node, param_attr=attr)
def _pad_if_asymmetric(self, node, pads, val_name): # pads: SSEE
assert len(pads) & 1 == 0
......@@ -418,10 +410,8 @@ class ONNXOpMapper(OpMapper):
else:
attr['out_shape'] = out_shape
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
def RoiAlign(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -437,13 +427,14 @@ class ONNXOpMapper(OpMapper):
'spatial_scale': spatial_scale,
'sampling_ratio': sampling_ratio,
}
node.fluid_code.add_layer('roi_align',
inputs={
'input': val_x,
'rois': val_rois
},
output=node,
param_attr=attr)
node.fluid_code.add_layer(
'roi_align',
inputs={
'input': val_x,
'rois': val_rois
},
output=node,
param_attr=attr)
def MaxRoiPool(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -456,13 +447,14 @@ class ONNXOpMapper(OpMapper):
'pooled_width': pooled_width,
'spatial_scale': spatial_scale,
}
node.fluid_code.add_layer('roi_pool',
inputs={
'input': val_x,
'rois': val_rois
},
output=node,
param_attr=attr)
node.fluid_code.add_layer(
'roi_pool',
inputs={
'input': val_x,
'rois': val_rois
},
output=node,
param_attr=attr)
def Pad(self, node, op_independent=True):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -499,32 +491,27 @@ class ONNXOpMapper(OpMapper):
attr['paddings'] = paddings
if op_independent:
attr['name'] = string(node.layer_name)
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
else:
attr['name'] = string(node.layer_name + '_paded')
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node.layer_name + '_paded',
param_attr=attr)
node.fluid_code.add_layer(
fluid_op,
inputs=val_x,
output=node.layer_name + '_paded',
param_attr=attr)
return node.layer_name + '_paded'
def Unsqueeze(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = node.get_attr('axes')
if len(val_x.out_shapes[0]) == 0:
node.fluid_code.add_layer('assign',
inputs=val_x,
output=node,
param_attr=None)
node.fluid_code.add_layer(
'assign', inputs=val_x, output=node, param_attr=None)
else:
attr = {'axes': axes, 'name': string(node.layer_name)}
node.fluid_code.add_layer('unsqueeze',
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
'unsqueeze', inputs=val_x, output=node, param_attr=attr)
def Shrink(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -532,10 +519,20 @@ class ONNXOpMapper(OpMapper):
lambd = node.get_attr('lambd')
assert bias == 0.0, 'not support bias!=0'
attr = {'threshold': lambd, 'name': node.layer_name}
node.fluid_code.add_layer('hard_shrink',
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
'hard_shrink', inputs=val_x, output=node, param_attr=attr)
def Greater(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_y = self.graph.get_input_node(node, idx=1, copy=True)
node.fluid_code.add_layer(
'greater_than',
inputs={
'x': val_x,
'y': val_y
},
output=node,
param_attr=None)
def Constant(self, node):
val_output = self.graph.get_node(node.layer.output[0], copy=True)
......@@ -565,10 +562,8 @@ class ONNXOpMapper(OpMapper):
if dtype.name == 'int64':
dtype = 'int32'
attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
node.fluid_code.add_layer('fill_constant',
inputs=None,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
'fill_constant', inputs=None, output=node, param_attr=attr)
else:
value = np.reshape(value, shape)
self.weights[node.layer_name] = value
......@@ -579,10 +574,8 @@ class ONNXOpMapper(OpMapper):
'attr': string(node.layer_name),
'default_initializer': 'Constant(0.0)'
}
node.fluid_code.add_layer("create_parameter",
inputs=None,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"create_parameter", inputs=None, output=node, param_attr=attr)
def Resize(self, node):
self._interpolate(node)
......@@ -603,16 +596,15 @@ class ONNXOpMapper(OpMapper):
name_ones = node.layer_name + '_ones'
attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
node.fluid_code.add_layer('ones',
inputs=None,
output=name_ones,
param_attr=attr_ones)
node.fluid_code.add_layer(
'ones', inputs=None, output=name_ones, param_attr=attr_ones)
inputs = {'x': name_ones, 'y': val_x}
attr = {'name': string(node.layer_name)}
node.fluid_code.add_layer('elementwise_mul',
inputs=inputs,
output=node.layer_name,
param_attr=attr)
node.fluid_code.add_layer(
'elementwise_mul',
inputs=inputs,
output=node.layer_name,
param_attr=attr)
def Gather(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -622,72 +614,75 @@ class ONNXOpMapper(OpMapper):
assert len(
indices_shape) <= 2, "Gather op don't support dim of indice >2 "
if axis == 0 and len(indices_shape) <= 1:
node.fluid_code.add_layer('gather',
inputs={
'input': val_x,
'index': indices
},
output=node,
param_attr=None)
node.fluid_code.add_layer(
'gather',
inputs={
'input': val_x,
'index': indices
},
output=node,
param_attr=None)
elif axis > 0 and len(indices_shape) <= 1:
perm = list(range(len(val_x.out_shapes[0])))
perm = [axis] + perm[:axis] + perm[axis + 1:]
attr_trans = {'perm': perm}
name_trans = val_x.layer_name + '_trans'
node.fluid_code.add_layer('transpose',
inputs=val_x,
output=name_trans,
param_attr=attr_trans)
node.fluid_code.add_layer('gather',
inputs={
'input': name_trans,
'index': indices
},
output=node,
param_attr=None)
node.fluid_code.add_layer('transpose',
inputs=node,
output=node,
param_attr=attr_trans)
node.fluid_code.add_layer(
'transpose',
inputs=val_x,
output=name_trans,
param_attr=attr_trans)
node.fluid_code.add_layer(
'gather',
inputs={
'input': name_trans,
'index': indices
},
output=node,
param_attr=None)
node.fluid_code.add_layer(
'transpose', inputs=node, output=node, param_attr=attr_trans)
elif len(indices_shape) > 1:
from functools import reduce
reshape_shape = reduce(lambda x, y: x * y, indices_shape)
node.fluid_code.add_layer('reshape',
inputs=indices,
output=indices,
param_attr={'shape': [
reshape_shape,
]})
node.fluid_code.add_layer(
'reshape',
inputs=indices,
output=indices,
param_attr={'shape': [
reshape_shape,
]})
perm = list(range(len(val_x.out_shapes[0])))
perm = [axis] + perm[:axis] + perm[axis + 1:]
attr_trans = {'perm': perm}
name_trans = val_x.layer_name + '_trans'
node.fluid_code.add_layer('transpose',
inputs=val_x,
output=name_trans,
param_attr=attr_trans)
node.fluid_code.add_layer('gather',
inputs={
'input': name_trans,
'index': indices
},
output=node,
param_attr=None)
node.fluid_code.add_layer('transpose',
inputs=node,
output=node,
param_attr=attr_trans)
node.fluid_code.add_layer(
'transpose',
inputs=val_x,
output=name_trans,
param_attr=attr_trans)
node.fluid_code.add_layer(
'gather',
inputs={
'input': name_trans,
'index': indices
},
output=node,
param_attr=None)
node.fluid_code.add_layer(
'transpose', inputs=node, output=node, param_attr=attr_trans)
val_x_shape = val_x.out_shapes[0]
reshaped_shape = []
for i in perm:
reshaped_shape.append(indices_shape[i])
for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
reshaped_shape.append(i)
node.fluid_code.add_layer('reshape',
inputs=node,
output=node,
param_attr={'shape': reshaped_shape})
node.fluid_code.add_layer(
'reshape',
inputs=node,
output=node,
param_attr={'shape': reshaped_shape})
def Slice(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -725,10 +720,8 @@ class ONNXOpMapper(OpMapper):
if value > shape[axes[idx]]:
ends[idx] = shape[axes[idx]]
attr = {"axes": axes, "starts": starts, "ends": ends}
node.fluid_code.add_layer('slice',
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
'slice', inputs=val_x, output=node, param_attr=attr)
def ConstantOfShape(self, node):
val_shape = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -751,10 +744,8 @@ class ONNXOpMapper(OpMapper):
if dtype.name == 'int64':
dtype = 'int32'
attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
node.fluid_code.add_layer('fill_constant',
inputs=None,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
'fill_constant', inputs=None, output=node, param_attr=attr)
def Split(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -769,10 +760,8 @@ class ONNXOpMapper(OpMapper):
'name': string(node.layer_name)
}
node.fluid_code.add_layer('split',
inputs=val_x,
output=val_y,
param_attr=attr)
node.fluid_code.add_layer(
'split', inputs=val_x, output=val_y, param_attr=attr)
def Reshape(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -789,10 +778,11 @@ class ONNXOpMapper(OpMapper):
shape, _, _ = self.get_dynamic_shape(val_shape.layer_name)
if val_shape.dtype == 'int64':
val_shape_cast = val_shape.layer_name + '_cast'
node.fluid_code.add_layer('cast',
inputs=val_shape,
output=val_shape_cast,
param_attr={'dtype': string('int32')})
node.fluid_code.add_layer(
'cast',
inputs=val_shape,
output=val_shape_cast,
param_attr={'dtype': string('int32')})
attr['actual_shape'] = val_shape_cast
else:
......@@ -810,10 +800,8 @@ class ONNXOpMapper(OpMapper):
val_x.layer_name, val_reshaped.layer_name)
attr['shape'] = shape
node.fluid_code.add_layer('reshape',
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
'reshape', inputs=val_x, output=node, param_attr=attr)
def Cast(self, node):
val_input = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -827,10 +815,8 @@ class ONNXOpMapper(OpMapper):
if output_dtype:
assert dtype == output_dtype, 'dtype of to unmatches output'
attr = {'dtype': string(dtype)}
node.fluid_code.add_layer('cast',
inputs=val_input,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
'cast', inputs=val_input, output=node, param_attr=attr)
def AveragePool(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -865,10 +851,8 @@ class ONNXOpMapper(OpMapper):
"name": string(node.layer_name)
}
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
def Concat(self, node):
inputs = []
......@@ -880,19 +864,15 @@ class ONNXOpMapper(OpMapper):
inputs.append(ipt.layer_name)
axis = node.get_attr('axis')
attr = {'axis': axis}
node.fluid_code.add_layer('concat',
inputs=inputs,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
'concat', inputs=inputs, output=node, param_attr=attr)
def Flatten(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axis = node.get_attr('axis', 1)
attr = {"axis": str(axis), "name": string(node.layer_name)}
node.fluid_code.add_layer('flatten',
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
'flatten', inputs=val_x, output=node, param_attr=attr)
def Gemm(self, node):
val_a = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -911,33 +891,37 @@ class ONNXOpMapper(OpMapper):
"alpha": alpha,
"name": string(val_mm)
}
node.fluid_code.add_layer('matmul',
inputs=matmul_inputs,
output=val_mm,
param_attr=attr_matmul)
node.fluid_code.add_layer(
'matmul',
inputs=matmul_inputs,
output=val_mm,
param_attr=attr_matmul)
if beta != 0:
if beta == 1.:
add_inputs = {"x": val_mm, "y": val_c}
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer("elementwise_add",
inputs=add_inputs,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"elementwise_add",
inputs=add_inputs,
output=node,
param_attr=attr)
else:
var_beta = node.layer_name + '_beta'
matmul_beta_inputs = {"x": val_c, "y": var_beta}
node.fluid_code.add_layer("Constant",
inputs=matmul_beta_inputs,
output=var_beta,
param_attr={'value': beta})
node.fluid_code.add_layer(
"Constant",
inputs=matmul_beta_inputs,
output=var_beta,
param_attr={'value': beta})
add_inputs = {"x": val_mm, "y": var_beta}
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer("elementwise_add",
inputs=add_inputs,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"elementwise_add",
inputs=add_inputs,
output=node,
param_attr=attr)
def Sum(self, node):
val_inps = node.layer.input
......@@ -953,19 +937,16 @@ class ONNXOpMapper(OpMapper):
"x": node.layer_name,
"y": y,
}
node.fluid_code.add_layer("elementwise_add",
inputs=inputs,
output=node)
node.fluid_code.add_layer(
"elementwise_add", inputs=inputs, output=node)
def MatMul(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_y = self.graph.get_input_node(node, idx=1, copy=True)
inputs = {"x": val_x, "y": val_y}
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer("matmul",
inputs=inputs,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"matmul", inputs=inputs, output=node, param_attr=attr)
def BatchNormalization(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -996,27 +977,21 @@ class ONNXOpMapper(OpMapper):
"use_global_stats": spatial,
"name": string(node.layer_name)
}
node.fluid_code.add_layer("batch_norm",
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"batch_norm", inputs=val_x, output=node, param_attr=attr)
def Transpose(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
perm = node.get_attr('perm')
attr = {'perm': perm, "name": string(node.layer_name)}
node.fluid_code.add_layer("transpose",
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"transpose", inputs=val_x, output=node, param_attr=attr)
def Relu(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
attr = {"name": string(node.layer_name)}
node.fluid_code.add_layer("relu",
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"relu", inputs=val_x, output=node, param_attr=attr)
def PRelu(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -1032,30 +1007,27 @@ class ONNXOpMapper(OpMapper):
"param_attr": string(val_slope.layer_name),
'mode': string(mode)
}
node.fluid_code.add_layer("prelu",
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"prelu", inputs=val_x, output=node, param_attr=attr)
def Squeeze(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = node.get_attr('axes')
attr = {'axes': axes, "name": string(node.layer_name)}
node.fluid_code.add_layer("squeeze",
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"squeeze", inputs=val_x, output=node, param_attr=attr)
def Equal(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_y = self.graph.get_input_node(node, idx=1, copy=True)
node.fluid_code.add_layer("equal",
inputs={
'x': val_x,
'y': val_y
},
output=node,
param_attr=None)
node.fluid_code.add_layer(
"equal",
inputs={
'x': val_x,
'y': val_y
},
output=node,
param_attr=None)
def Where(self, node):
condition = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -1063,52 +1035,57 @@ class ONNXOpMapper(OpMapper):
val_y = self.graph.get_input_node(node, idx=2, copy=True)
not_condition = condition.layer_name + '_not'
node.fluid_code.add_layer("logical_not",
inputs=condition,
output=not_condition,
param_attr=None)
node.fluid_code.add_layer(
"logical_not",
inputs=condition,
output=not_condition,
param_attr=None)
cast_not_condition = not_condition + '_cast'
node.fluid_code.add_layer("cast",
inputs=not_condition,
output=cast_not_condition,
param_attr={'dtype': string(val_x.dtype)})
node.fluid_code.add_layer(
"cast",
inputs=not_condition,
output=cast_not_condition,
param_attr={'dtype': string(val_x.dtype)})
cast_condition = condition.layer_name + '_cast'
node.fluid_code.add_layer("cast",
inputs=condition,
output=cast_condition,
param_attr={'dtype': string(val_x.dtype)})
node.fluid_code.add_layer(
"cast",
inputs=condition,
output=cast_condition,
param_attr={'dtype': string(val_x.dtype)})
mul_val_x = val_x.layer_name + '_mul'
node.fluid_code.add_layer("elementwise_mul",
inputs={
'x': val_x,
'y': cast_condition
},
output=mul_val_x,
param_attr=None)
node.fluid_code.add_layer(
"elementwise_mul",
inputs={
'x': val_x,
'y': cast_condition
},
output=mul_val_x,
param_attr=None)
mul_val_y = val_y.layer_name + '_mul'
node.fluid_code.add_layer("elementwise_mul",
inputs={
'x': val_y,
'y': cast_not_condition
},
output=mul_val_y,
param_attr=None)
node.fluid_code.add_layer("elementwise_add",
inputs={
'x': mul_val_x,
'y': mul_val_y
},
output=node,
param_attr=None)
node.fluid_code.add_layer(
"elementwise_mul",
inputs={
'x': val_y,
'y': cast_not_condition
},
output=mul_val_y,
param_attr=None)
node.fluid_code.add_layer(
"elementwise_add",
inputs={
'x': mul_val_x,
'y': mul_val_y
},
output=node,
param_attr=None)
def NonZero(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
where_name = node.layer_name + '_where'
node.fluid_code.add_layer("where",
inputs=val_x.layer_name + '!=0',
output=where_name)
node.fluid_code.add_layer(
"where", inputs=val_x.layer_name + '!=0', output=where_name)
dims = len(val_x.out_shapes[0])
elements_count_val_x = reduce(lambda x, y: x * y, val_x.out_shapes[0])
flatten_names = []
......@@ -1121,18 +1098,15 @@ class ONNXOpMapper(OpMapper):
'starts': [0, dim],
'ends': [elements_count_val_x, dim + 1]
}
node.fluid_code.add_layer("slice",
inputs=where_name,
output=slice_name,
param_attr=attr)
node.fluid_code.add_layer("flatten",
inputs=slice_name,
output=flatten_name,
param_attr={'axis': 0})
node.fluid_code.add_layer("concat",
inputs=flatten_names,
output=node,
param_attr={'axis': 0})
node.fluid_code.add_layer(
"slice", inputs=where_name, output=slice_name, param_attr=attr)
node.fluid_code.add_layer(
"flatten",
inputs=slice_name,
output=flatten_name,
param_attr={'axis': 0})
node.fluid_code.add_layer(
"concat", inputs=flatten_names, output=node, param_attr={'axis': 0})
def Identity(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -1151,10 +1125,8 @@ class ONNXOpMapper(OpMapper):
'expand_times': repeats,
"name": string(node.layer_name),
}
node.fluid_code.add_layer("expand",
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"expand", inputs=val_x, output=node, param_attr=attr)
def MaxPool(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -1191,10 +1163,8 @@ class ONNXOpMapper(OpMapper):
"name": string(node.layer_name),
"exclusive": False
}
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
def _global_pool(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -1220,10 +1190,8 @@ class ONNXOpMapper(OpMapper):
"global_pooling": True,
"name": string(node.layer_name)
}
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
def GlobalMaxPool(self, node):
self._global_pool(node)
......@@ -1279,10 +1247,8 @@ class ONNXOpMapper(OpMapper):
attr["bias_attr"] = string(val_b.layer_name)
else:
attr["bias_attr"] = False
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
def ConvTranspose(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -1332,10 +1298,8 @@ class ONNXOpMapper(OpMapper):
'bias_attr': None if val_b is None else string(val_b.layer_name),
'name': string(node.layer_name),
}
node.fluid_code.add_layer(fluid_op,
inputs=val_x,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
fluid_op, inputs=val_x, output=node, param_attr=attr)
def GRU(self, node):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
......@@ -1352,15 +1316,13 @@ class ONNXOpMapper(OpMapper):
else:
miss_arg_num += 1
if num_ipt > 4 and node.layer.input[4] != '':
val_len = self.graph.get_input_node(node,
idx=4 - miss_arg_num,
copy=True)
val_len = self.graph.get_input_node(
node, idx=4 - miss_arg_num, copy=True)
else:
miss_arg_num += 1
if num_ipt > 5 and node.layer.input[5] != '':
val_xh = self.graph.get_input_node(node,
idx=5 - miss_arg_num,
copy=True)
val_xh = self.graph.get_input_node(
node, idx=5 - miss_arg_num, copy=True)
data, dtype, shape = self.get_dynamic_shape(val_x.layer_name)
......@@ -1401,97 +1363,101 @@ class ONNXOpMapper(OpMapper):
is_reverse = direction == 'reverse'
var_x0 = node.layer_name + '_x0'
node.fluid_code.add_layer('squeeze',
inputs=val_x,
output=var_x0,
param_attr={
'axes': [1],
'name': string(var_x0)
})
node.fluid_code.add_layer(
'squeeze',
inputs=val_x,
output=var_x0,
param_attr={
'axes': [1],
'name': string(var_x0)
})
var_w0 = node.layer_name + '_w0'
node.fluid_code.add_layer('squeeze',
inputs=val_w,
output=var_w0,
param_attr={
'axes': [0],
'name': string(var_w0)
})
node.fluid_code.add_layer(
'squeeze',
inputs=val_w,
output=var_w0,
param_attr={
'axes': [0],
'name': string(var_w0)
})
var_fc = node.layer_name + '_fc'
var_mm = (node.layer_name + '_mm') if val_b else var_fc
node.fluid_code.add_layer('matmul',
inputs={
'x': var_x0,
'y': var_w0
},
output=var_mm,
param_attr={
'transpose_x': 0,
'transpose_y': 1,
'name': string(var_mm)
})
node.fluid_code.add_layer(
'matmul',
inputs={
'x': var_x0,
'y': var_w0
},
output=var_mm,
param_attr={
'transpose_x': 0,
'transpose_y': 1,
'name': string(var_mm)
})
var_r0 = node.layer_name + '_r0'
node.fluid_code.add_layer('squeeze',
inputs=val_r,
output=var_r0,
param_attr={
'axes': [0],
'name': string(var_r0)
})
node.fluid_code.add_layer(
'squeeze',
inputs=val_r,
output=var_r0,
param_attr={
'axes': [0],
'name': string(var_r0)
})
var_r0t = node.layer_name + '_r0t'
node.fluid_code.add_layer('transpose',
inputs=var_r0,
output=var_r0t,
param_attr={
'perm': [1, 0],
'name': string(var_r0t)
})
node.fluid_code.add_layer(
'transpose',
inputs=var_r0,
output=var_r0t,
param_attr={
'perm': [1, 0],
'name': string(var_r0t)
})
if val_b:
var_bi = node.layer_name + '_bi'
var_bh = node.layer_name + '_bh'
node.fluid_code.add_layer('split',
inputs=val_b,
output=var_bi + ',' + var_bh,
param_attr={
'axis':
1,
'split':
[hidden_size * 3, hidden_size * 3],
'name':
string(node.layer_name + '.b/split')
})
node.fluid_code.add_layer(
'split',
inputs=val_b,
output=var_bi + ',' + var_bh,
param_attr={
'axis': 1,
'split': [hidden_size * 3, hidden_size * 3],
'name': string(node.layer_name + '.b/split')
})
var_bi0 = node.layer_name + '_bi0'
node.fluid_code.add_layer('squeeze',
inputs=var_bi,
output=var_bi0,
param_attr={
'axes': [0],
'name': string(var_bi0)
})
node.fluid_code.add_layer('elmentwise_add',
inputs=[var_mm, var_bi0],
output=var_fc,
param_attr={
'axes':
1,
'name':
string(node.layer_name + '.i/bias')
})
node.fluid_code.add_layer(
'squeeze',
inputs=var_bi,
output=var_bi0,
param_attr={
'axes': [0],
'name': string(var_bi0)
})
node.fluid_code.add_layer(
'elmentwise_add',
inputs=[var_mm, var_bi0],
output=var_fc,
param_attr={
'axes': 1,
'name': string(node.layer_name + '.i/bias')
})
if val_xh:
var_xh0 = node.layer_name + '_xh0'
node.fluid_code.add_layer('squeeze',
inputs=val_xh,
output=var_xh0,
param_attr={
'axes': [1],
'name': string(var_xh0)
})
node.fluid_code.add_layer(
'squeeze',
inputs=val_xh,
output=var_xh0,
param_attr={
'axes': [1],
'name': string(var_xh0)
})
var_y00 = node.layer_name + '_y00'
attr = {
......@@ -1503,26 +1469,29 @@ class ONNXOpMapper(OpMapper):
'param_attr': string(var_r0t),
'bias_attr': string(var_bh) if val_b else False,
}
node.fluid_code.add_layer('dynamic_gru',
inputs=var_fc + ',' + str(hidden_size),
output=var_y00,
param_attr=attr)
node.fluid_code.add_layer(
'dynamic_gru',
inputs=var_fc + ',' + str(hidden_size),
output=var_y00,
param_attr=attr)
num_opt = len(node.layer.output)
if num_opt > 0 and node.layer.output[0] != '':
node.fluid_code.add_layer('unsqueeze',
inputs=var_y00,
output=node.layer.output[0],
param_attr={
'axes': [1, 1],
'name': string(node.layer.output[0])
})
node.fluid_code.add_layer(
'unsqueeze',
inputs=var_y00,
output=node.layer.output[0],
param_attr={
'axes': [1, 1],
'name': string(node.layer.output[0])
})
if num_opt > 1 and node.layer.output[1] != '':
node.fluid_code.add_layer('unsqueeze',
inputs=var_y00,
output=node.layer.output[1],
param_attr={
'axes': [1, 1],
'name': string(node.layer.output[1])
})
node.fluid_code.add_layer(
'unsqueeze',
inputs=var_y00,
output=node.layer.output[1],
param_attr={
'axes': [1, 1],
'name': string(node.layer.output[1])
})
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册