提交 c71b77ec 编写于 作者: S SunAhong1993

fix the docs

上级 1203813c
......@@ -93,12 +93,6 @@ X2Paddle提供了工具解决如下问题,详见[tools/README.md](tools/README
6. [X2Paddle添加内置的Caffe自定义层](./docs/user_guides/add_caffe_custom_layer.md)
## 更新历史
2019.08.05
1. 统一tensorflow/caffe/onnx模型转换代码和对外接口
2. 解决上一版caffe2fluid无法转换多分支模型的问题
3. 解决Windows上保存模型无法加载的问题
4. 新增optimizer,优化代码结构,合并conv、batch_norm的bias和激活函数
2020.12.09
1. 新增PyTorch2Paddle转换方式,转换得到Paddle动态图代码,并动转静获得inference_model。
方式一:trace方式,转换后的代码有模块划分,每个模块的功能与PyTorch相同。
......@@ -107,8 +101,6 @@ X2Paddle提供了工具解决如下问题,详见[tools/README.md](tools/README
3. 新增TensorFlow op(14个):Neg、Greater、FloorMod、LogicalAdd、Prd、Equal、Conv3D、Ceil、AddN、DivNoNan、Where、MirrorPad、Size、TopKv2
4. 新增Optimizer模块,主要包括op融合、op消除功能,转换后的代码可读性更强,进行预测时耗时更短。
**如果你需要之前版本的tensorflow2fluid/caffe2fluid/onnx2fluid,可以继续访问release-0.9分支,获取之前版本的代码使用。**
## Acknowledgements
......
......@@ -61,7 +61,7 @@
| 41 | MatMul | 42 | Sum | 43 | Transpose | 44 | BatchNormalization |
| 45 | Squeeze | 46 | Equal | 47 | Identity | 48 | GlobalAveragePool |
| 49 | MaxPool | 50 | Conv | 51 | Gemm | 52 | NonZero |
| 53 | Abs | 54 | Floor |
| 53 | Abs | 54 | Floor | 52 | ArgMax |
## PyTorch
Aten:
......@@ -93,7 +93,8 @@ Aten:
| 93 | aten::sub | 94 | aten::t |95|aten::tanh|96|aten::split|
| 97 | aten::transpose | 98 | aten::to |99|aten::type\_as|100|aten::unsqueeze|
| 101 | aten::upsample\_bilinear2d | 102 | aten::values |103|aten::view|104|aten::warn|
| 105 | aten::where | 106 | aten::zeros |107|aten::zeros\_like|||
| 105 | aten::where | 106 | aten::zeros |107|aten::zeros\_like|108|aten::bmm|
| 109 | aten::sub\_ | 110 | aten:erf |111|aten::lstm|112|aten::gather|
Prim:
| 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
......
......@@ -5,28 +5,28 @@
## TensorFlow
| 模型 | 代码 | 备注 |
|------|----------|------|
| SqueezeNet | [code](https://github.com/tensorflow/tpu/blob/master/models/official/squeezenet/squeezenet_model.py)|-|
| MobileNet_V1 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |-|
| MobileNet_V2 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |-|
| ShuffleNet | [code](https://github.com/TropComplique/shufflenet-v2-tensorflow) |-|
| mNASNet | [code](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet) |-|
| EfficientNet | [code](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |-|
| Inception_V3 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py) |-|
| Inception_V4 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py) |-|
| Inception_ResNet_V2 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py) |-|
| VGG16 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |-|
| ResNet_V1_101 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |-|
| ResNet_V2_101 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |-|
| UNet | [code1](https://github.com/jakeret/tf_unet )/[code2](https://github.com/lyatdawn/Unet-Tensorflow) |-|
| MTCNN | [code](https://github.com/AITTSMD/MTCNN-Tensorflow) |-|
| YOLO-V3| [code](https://github.com/YunYang1994/tensorflow-yolov3) | -|
| FALSR | [code](https://github.com/xiaomi-automl/FALSR) | 需使用参数without_data_format_optimization |
| DCSCN | [code](https://modelzoo.co/model/dcscn-super-resolution) | 需使用参数without_data_format_optimization |
| Bert(albert) | [code](https://github.com/google-research/albert#pre-trained-models) | 需使用参数without_data_format_optimization |
| Bert(chinese_L-12_H-768_A-12) | [code](https://github.com/google-research/bert#pre-trained-models) | 需使用参数without_data_format_optimization |
| Bert(multi_cased_L-12_H-768_A-12) | [code](https://github.com/google-research/bert#pre-trained-models) | 需使用参数without_data_format_optimization |
| 模型 | 代码 |
|------|----------|
| SqueezeNet | [code](https://github.com/tensorflow/tpu/blob/master/models/official/squeezenet/squeezenet_model.py)|
| MobileNet_V1 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |
| MobileNet_V2 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |
| ShuffleNet | [code](https://github.com/TropComplique/shufflenet-v2-tensorflow) |
| mNASNet | [code](https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet) |
| EfficientNet | [code](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) |
| Inception_V3 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py) |
| Inception_V4 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py) |
| Inception_ResNet_V2 | [code](https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py) |
| VGG16 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |
| ResNet_V1_101 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |
| ResNet_V2_101 | [code](https://github.com/tensorflow/models/tree/master/research/slim/nets) |
| UNet | [code1](https://github.com/jakeret/tf_unet )/[code2](https://github.com/lyatdawn/Unet-Tensorflow) |
| MTCNN | [code](https://github.com/AITTSMD/MTCNN-Tensorflow) |
| YOLO-V3| [code](https://github.com/YunYang1994/tensorflow-yolov3) |
| FALSR | [code](https://github.com/xiaomi-automl/FALSR) |
| DCSCN | [code](https://modelzoo.co/model/dcscn-super-resolution) |
| Bert(albert) | [code](https://github.com/google-research/albert#pre-trained-models) |
| Bert(chinese_L-12_H-768_A-12) | [code](https://github.com/google-research/bert#pre-trained-models) |
| Bert(multi_cased_L-12_H-768_A-12) | [code](https://github.com/google-research/bert#pre-trained-models) |
## Caffe
......@@ -72,8 +72,8 @@
| EfficientNet | [pytorch(personal practice)](https://github.com/rwightman/gen-efficientnet-pytorch) |9|
| SqueezeNet | [onnx official](https://s3.amazonaws.com/download.onnx/models/opset_9/squeezenet.tar.gz) |9|
|Ultra-Light-Fast-Generic-Face-Detector-1MB| [onnx_model](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/tree/master/models/onnx)|9 |
|BERT| [pytorch(huggingface)](https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb)|11|转换时需指定input shape,见[文档Q3](FAQ.md)|
|GPT2| [pytorch(huggingface)](https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb)|11|转换时需指定input shape,见[文档Q3](FAQ.md)|
|BERT| [pytorch(huggingface)](https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb)|11|转换时需指定input shape,见[文档Q3](../user_guides/FAQ.md)|
|GPT2| [pytorch(huggingface)](https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb)|11|转换时需指定input shape,见[文档Q3](../user_guides/FAQ.md)|
## PyTorch
......@@ -96,3 +96,6 @@
| FlaubertModel | [code](https://huggingface.co/transformers/model_doc/flaubert.html) |只支持trace模式|
| Roberta| [code](https://huggingface.co/transformers/model_doc/roberta.html) |只支持trace模式|
| XLMRobertaForTokenClassification|[code](https://huggingface.co/transformers/model_doc/xlmroberta.html) |只支持trace模式|
| EasyOCR_detector|[code](https://github.com/JaidedAI/EasyOCR/blob/master/easyocr/detection.py) |-|
| EasyOCR_recognizer|[code](https://github.com/JaidedAI/EasyOCR/blob/master/easyocr/recognition.py) |-|
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册