Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
c71b77ec
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c71b77ec
编写于
12月 29, 2020
作者:
S
SunAhong1993
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix the docs
上级
1203813c
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
30 addition
and
34 deletion
+30
-34
README.md
README.md
+0
-8
docs/introduction/op_list.md
docs/introduction/op_list.md
+3
-2
docs/introduction/x2paddle_model_zoo.md
docs/introduction/x2paddle_model_zoo.md
+27
-24
未找到文件。
README.md
浏览文件 @
c71b77ec
...
...
@@ -93,12 +93,6 @@ X2Paddle提供了工具解决如下问题,详见[tools/README.md](tools/README
6.
[
X2Paddle添加内置的Caffe自定义层
](
./docs/user_guides/add_caffe_custom_layer.md
)
## 更新历史
2019.
08.05
1.
统一tensorflow/caffe/onnx模型转换代码和对外接口
2.
解决上一版caffe2fluid无法转换多分支模型的问题
3.
解决Windows上保存模型无法加载的问题
4.
新增optimizer,优化代码结构,合并conv、batch_norm的bias和激活函数
2020.
12.09
1.
新增PyTorch2Paddle转换方式,转换得到Paddle动态图代码,并动转静获得inference_model。
方式一:trace方式,转换后的代码有模块划分,每个模块的功能与PyTorch相同。
...
...
@@ -107,8 +101,6 @@ X2Paddle提供了工具解决如下问题,详见[tools/README.md](tools/README
3.
新增TensorFlow op(14个):Neg、Greater、FloorMod、LogicalAdd、Prd、Equal、Conv3D、Ceil、AddN、DivNoNan、Where、MirrorPad、Size、TopKv2
4.
新增Optimizer模块,主要包括op融合、op消除功能,转换后的代码可读性更强,进行预测时耗时更短。
**如果你需要之前版本的tensorflow2fluid/caffe2fluid/onnx2fluid,可以继续访问release-0.9分支,获取之前版本的代码使用。**
## Acknowledgements
...
...
docs/introduction/op_list.md
浏览文件 @
c71b77ec
...
...
@@ -61,7 +61,7 @@
| 41 | MatMul | 42 | Sum | 43 | Transpose | 44 | BatchNormalization |
| 45 | Squeeze | 46 | Equal | 47 | Identity | 48 | GlobalAveragePool |
| 49 | MaxPool | 50 | Conv | 51 | Gemm | 52 | NonZero |
| 53 | Abs | 54 | Floor |
| 53 | Abs | 54 | Floor |
52 | ArgMax |
## PyTorch
Aten:
...
...
@@ -93,7 +93,8 @@ Aten:
| 93 | aten::sub | 94 | aten::t |95|aten::tanh|96|aten::split|
| 97 | aten::transpose | 98 | aten::to |99|aten::type
\_
as|100|aten::unsqueeze|
| 101 | aten::upsample
\_
bilinear2d | 102 | aten::values |103|aten::view|104|aten::warn|
| 105 | aten::where | 106 | aten::zeros |107|aten::zeros
\_
like|||
| 105 | aten::where | 106 | aten::zeros |107|aten::zeros
\_
like|108|aten::bmm|
| 109 | aten::sub
\_
| 110 | aten:erf |111|aten::lstm|112|aten::gather|
Prim:
| 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
...
...
docs/introduction/x2paddle_model_zoo.md
浏览文件 @
c71b77ec
...
...
@@ -5,28 +5,28 @@
## TensorFlow
| 模型 | 代码 |
备注 |
|------|----------|
------|
| SqueezeNet |
[
code
](
https://github.com/tensorflow/tpu/blob/master/models/official/squeezenet/squeezenet_model.py
)
|
-|
| MobileNet_V1 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
-|
| MobileNet_V2 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
-|
| ShuffleNet |
[
code
](
https://github.com/TropComplique/shufflenet-v2-tensorflow
)
|
-|
| mNASNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
)
|
-|
| EfficientNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
)
|
-|
| Inception_V3 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py
)
|
-|
| Inception_V4 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py
)
|
-|
| Inception_ResNet_V2 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
)
|
-|
| VGG16 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
-|
| ResNet_V1_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
-|
| ResNet_V2_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
-|
| UNet |
[
code1
](
https://github.com/jakeret/tf_unet
)
/
[
code2
](
https://github.com/lyatdawn/Unet-Tensorflow
)
|
-|
| MTCNN |
[
code
](
https://github.com/AITTSMD/MTCNN-Tensorflow
)
|
-|
| YOLO-V3|
[
code
](
https://github.com/YunYang1994/tensorflow-yolov3
)
|
-|
| FALSR |
[
code
](
https://github.com/xiaomi-automl/FALSR
)
|
需使用参数without_data_format_optimization |
| DCSCN |
[
code
](
https://modelzoo.co/model/dcscn-super-resolution
)
|
需使用参数without_data_format_optimization |
| Bert(albert) |
[
code
](
https://github.com/google-research/albert#pre-trained-models
)
|
需使用参数without_data_format_optimization |
| Bert(chinese_L-12_H-768_A-12) |
[
code
](
https://github.com/google-research/bert#pre-trained-models
)
|
需使用参数without_data_format_optimization |
| Bert(multi_cased_L-12_H-768_A-12) |
[
code
](
https://github.com/google-research/bert#pre-trained-models
)
|
需使用参数without_data_format_optimization |
| 模型 | 代码 |
|------|----------|
| SqueezeNet |
[
code
](
https://github.com/tensorflow/tpu/blob/master/models/official/squeezenet/squeezenet_model.py
)
|
| MobileNet_V1 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
| MobileNet_V2 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
| ShuffleNet |
[
code
](
https://github.com/TropComplique/shufflenet-v2-tensorflow
)
|
| mNASNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
)
|
| EfficientNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
)
|
| Inception_V3 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v3.py
)
|
| Inception_V4 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py
)
|
| Inception_ResNet_V2 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
)
|
| VGG16 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
| ResNet_V1_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
| ResNet_V2_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|
| UNet |
[
code1
](
https://github.com/jakeret/tf_unet
)
/
[
code2
](
https://github.com/lyatdawn/Unet-Tensorflow
)
|
| MTCNN |
[
code
](
https://github.com/AITTSMD/MTCNN-Tensorflow
)
|
| YOLO-V3|
[
code
](
https://github.com/YunYang1994/tensorflow-yolov3
)
|
| FALSR |
[
code
](
https://github.com/xiaomi-automl/FALSR
)
|
| DCSCN |
[
code
](
https://modelzoo.co/model/dcscn-super-resolution
)
|
| Bert(albert) |
[
code
](
https://github.com/google-research/albert#pre-trained-models
)
|
| Bert(chinese_L-12_H-768_A-12) |
[
code
](
https://github.com/google-research/bert#pre-trained-models
)
|
| Bert(multi_cased_L-12_H-768_A-12) |
[
code
](
https://github.com/google-research/bert#pre-trained-models
)
|
## Caffe
...
...
@@ -72,8 +72,8 @@
| EfficientNet |
[
pytorch(personal practice)
](
https://github.com/rwightman/gen-efficientnet-pytorch
)
|9|
| SqueezeNet |
[
onnx official
](
https://s3.amazonaws.com/download.onnx/models/opset_9/squeezenet.tar.gz
)
|9|
|Ultra-Light-Fast-Generic-Face-Detector-1MB|
[
onnx_model
](
https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/tree/master/models/onnx
)
|9 |
|BERT|
[
pytorch(huggingface)
](
https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb
)
|11|转换时需指定input shape,见
[
文档Q3
](
FAQ.md
)
|
|GPT2|
[
pytorch(huggingface)
](
https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb
)
|11|转换时需指定input shape,见
[
文档Q3
](
FAQ.md
)
|
|BERT|
[
pytorch(huggingface)
](
https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb
)
|11|转换时需指定input shape,见
[
文档Q3
](
../user_guides/
FAQ.md
)
|
|GPT2|
[
pytorch(huggingface)
](
https://github.com/huggingface/transformers/blob/master/notebooks/04-onnx-export.ipynb
)
|11|转换时需指定input shape,见
[
文档Q3
](
../user_guides/
FAQ.md
)
|
## PyTorch
...
...
@@ -96,3 +96,6 @@
| FlaubertModel |
[
code
](
https://huggingface.co/transformers/model_doc/flaubert.html
)
|只支持trace模式|
| Roberta|
[
code
](
https://huggingface.co/transformers/model_doc/roberta.html
)
|只支持trace模式|
| XLMRobertaForTokenClassification|
[
code
](
https://huggingface.co/transformers/model_doc/xlmroberta.html
)
|只支持trace模式|
| EasyOCR_detector|
[
code
](
https://github.com/JaidedAI/EasyOCR/blob/master/easyocr/detection.py
)
|-|
| EasyOCR_recognizer|
[
code
](
https://github.com/JaidedAI/EasyOCR/blob/master/easyocr/recognition.py
)
|-|
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录