Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
bf7c7fc3
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bf7c7fc3
编写于
8月 17, 2020
作者:
S
sunyanfang01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add caffe protobuf
上级
52abf253
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
1947 addition
and
0 deletion
+1947
-0
x2paddle/decoder/caffe.proto
x2paddle/decoder/caffe.proto
+1947
-0
未找到文件。
x2paddle/decoder/caffe.proto
0 → 100644
浏览文件 @
bf7c7fc3
syntax
=
"proto2"
;
package
caffe
;
// Specifies the shape (dimensions) of a Blob.
message
BlobShape
{
repeated
int64
dim
=
1
[
packed
=
true
];
}
message
BlobProto
{
optional
BlobShape
shape
=
7
;
repeated
float
data
=
5
[
packed
=
true
];
repeated
float
diff
=
6
[
packed
=
true
];
repeated
double
double_data
=
8
[
packed
=
true
];
repeated
double
double_diff
=
9
[
packed
=
true
];
// 4D dimensions -- deprecated. Use "shape" instead.
optional
int32
num
=
1
[
default
=
0
];
optional
int32
channels
=
2
[
default
=
0
];
optional
int32
height
=
3
[
default
=
0
];
optional
int32
width
=
4
[
default
=
0
];
}
// The BlobProtoVector is simply a way to pass multiple blobproto instances
// around.
message
BlobProtoVector
{
repeated
BlobProto
blobs
=
1
;
}
message
Datum
{
optional
int32
channels
=
1
;
optional
int32
height
=
2
;
optional
int32
width
=
3
;
// the actual image data, in bytes
optional
bytes
data
=
4
;
optional
int32
label
=
5
;
// Optionally, the datum could also hold float data.
repeated
float
float_data
=
6
;
// If true data contains an encoded image that need to be decoded
optional
bool
encoded
=
7
[
default
=
false
];
}
// The label (display) name and label id.
message
LabelMapItem
{
// Both name and label are required.
optional
string
name
=
1
;
optional
int32
label
=
2
;
// display_name is optional.
optional
string
display_name
=
3
;
}
message
LabelMap
{
repeated
LabelMapItem
item
=
1
;
}
// Sample a bbox in the normalized space [0, 1] with provided constraints.
message
Sampler
{
// Minimum scale of the sampled bbox.
optional
float
min_scale
=
1
[
default
=
1.
];
// Maximum scale of the sampled bbox.
optional
float
max_scale
=
2
[
default
=
1.
];
// Minimum aspect ratio of the sampled bbox.
optional
float
min_aspect_ratio
=
3
[
default
=
1.
];
// Maximum aspect ratio of the sampled bbox.
optional
float
max_aspect_ratio
=
4
[
default
=
1.
];
}
// Constraints for selecting sampled bbox.
message
SampleConstraint
{
// Minimum Jaccard overlap between sampled bbox and all bboxes in
// AnnotationGroup.
optional
float
min_jaccard_overlap
=
1
;
// Maximum Jaccard overlap between sampled bbox and all bboxes in
// AnnotationGroup.
optional
float
max_jaccard_overlap
=
2
;
// Minimum coverage of sampled bbox by all bboxes in AnnotationGroup.
optional
float
min_sample_coverage
=
3
;
// Maximum coverage of sampled bbox by all bboxes in AnnotationGroup.
optional
float
max_sample_coverage
=
4
;
// Minimum coverage of all bboxes in AnnotationGroup by sampled bbox.
optional
float
min_object_coverage
=
5
;
// Maximum coverage of all bboxes in AnnotationGroup by sampled bbox.
optional
float
max_object_coverage
=
6
;
}
// Sample a batch of bboxes with provided constraints.
message
BatchSampler
{
// Use original image as the source for sampling.
optional
bool
use_original_image
=
1
[
default
=
true
];
// Constraints for sampling bbox.
optional
Sampler
sampler
=
2
;
// Constraints for determining if a sampled bbox is positive or negative.
optional
SampleConstraint
sample_constraint
=
3
;
// If provided, break when found certain number of samples satisfing the
// sample_constraint.
optional
uint32
max_sample
=
4
;
// Maximum number of trials for sampling to avoid infinite loop.
optional
uint32
max_trials
=
5
[
default
=
100
];
}
// Condition for emitting annotations.
message
EmitConstraint
{
enum
EmitType
{
CENTER
=
0
;
MIN_OVERLAP
=
1
;
}
optional
EmitType
emit_type
=
1
[
default
=
CENTER
];
// If emit_type is MIN_OVERLAP, provide the emit_overlap.
optional
float
emit_overlap
=
2
;
}
// The normalized bounding box [0, 1] w.r.t. the input image size.
message
NormalizedBBox
{
optional
float
xmin
=
1
;
optional
float
ymin
=
2
;
optional
float
xmax
=
3
;
optional
float
ymax
=
4
;
optional
int32
label
=
5
;
optional
bool
difficult
=
6
;
optional
float
score
=
7
;
optional
float
size
=
8
;
}
// Annotation for each object instance.
message
Annotation
{
optional
int32
instance_id
=
1
[
default
=
0
];
optional
NormalizedBBox
bbox
=
2
;
}
// Group of annotations for a particular label.
message
AnnotationGroup
{
optional
int32
group_label
=
1
;
repeated
Annotation
annotation
=
2
;
}
// An extension of Datum which contains "rich" annotations.
message
AnnotatedDatum
{
enum
AnnotationType
{
BBOX
=
0
;
}
optional
Datum
datum
=
1
;
// If there are "rich" annotations, specify the type of annotation.
// Currently it only supports bounding box.
// If there are no "rich" annotations, use label in datum instead.
optional
AnnotationType
type
=
2
;
// Each group contains annotation for a particular class.
repeated
AnnotationGroup
annotation_group
=
3
;
}
message
FillerParameter
{
// The filler type.
optional
string
type
=
1
[
default
=
'constant'
];
optional
float
value
=
2
[
default
=
0
];
// the value in constant filler
optional
float
min
=
3
[
default
=
0
];
// the min value in uniform filler
optional
float
max
=
4
[
default
=
1
];
// the max value in uniform filler
optional
float
mean
=
5
[
default
=
0
];
// the mean value in Gaussian filler
optional
float
std
=
6
[
default
=
1
];
// the std value in Gaussian filler
// The expected number of non-zero output weights for a given input in
// Gaussian filler -- the default -1 means don't perform sparsification.
optional
int32
sparse
=
7
[
default
=
-
1
];
// Normalize the filler variance by fan_in, fan_out, or their average.
// Applies to 'xavier' and 'msra' fillers.
enum
VarianceNorm
{
FAN_IN
=
0
;
FAN_OUT
=
1
;
AVERAGE
=
2
;
}
optional
VarianceNorm
variance_norm
=
8
[
default
=
FAN_IN
];
}
message
NetParameter
{
optional
string
name
=
1
;
// consider giving the network a name
// DEPRECATED. See InputParameter. The input blobs to the network.
repeated
string
input
=
3
;
// DEPRECATED. See InputParameter. The shape of the input blobs.
repeated
BlobShape
input_shape
=
8
;
// 4D input dimensions -- deprecated. Use "input_shape" instead.
// If specified, for each input blob there should be four
// values specifying the num, channels, height and width of the input blob.
// Thus, there should be a total of (4 * #input) numbers.
repeated
int32
input_dim
=
4
;
// Whether the network will force every layer to carry out backward operation.
// If set False, then whether to carry out backward is determined
// automatically according to the net structure and learning rates.
optional
bool
force_backward
=
5
[
default
=
false
];
// The current "state" of the network, including the phase, level, and stage.
// Some layers may be included/excluded depending on this state and the states
// specified in the layers' include and exclude fields.
optional
NetState
state
=
6
;
// Print debugging information about results while running Net::Forward,
// Net::Backward, and Net::Update.
optional
bool
debug_info
=
7
[
default
=
false
];
// The layers that make up the net. Each of their configurations, including
// connectivity and behavior, is specified as a LayerParameter.
repeated
LayerParameter
layer
=
100
;
// ID 100 so layers are printed last.
// DEPRECATED: use 'layer' instead.
repeated
V1LayerParameter
layers
=
2
;
}
// NOTE
// Update the next available ID when you add a new SolverParameter field.
//
// SolverParameter next available ID: 44 (last added: plateau_winsize)
message
SolverParameter
{
//////////////////////////////////////////////////////////////////////////////
// Specifying the train and test networks
//
// Exactly one train net must be specified using one of the following fields:
// train_net_param, train_net, net_param, net
// One or more test nets may be specified using any of the following fields:
// test_net_param, test_net, net_param, net
// If more than one test net field is specified (e.g., both net and
// test_net are specified), they will be evaluated in the field order given
// above: (1) test_net_param, (2) test_net, (3) net_param/net.
// A test_iter must be specified for each test_net.
// A test_level and/or a test_stage may also be specified for each test_net.
//////////////////////////////////////////////////////////////////////////////
// Proto filename for the train net, possibly combined with one or more
// test nets.
optional
string
net
=
24
;
// Inline train net param, possibly combined with one or more test nets.
optional
NetParameter
net_param
=
25
;
optional
string
train_net
=
1
;
// Proto filename for the train net.
repeated
string
test_net
=
2
;
// Proto filenames for the test nets.
optional
NetParameter
train_net_param
=
21
;
// Inline train net params.
repeated
NetParameter
test_net_param
=
22
;
// Inline test net params.
// The states for the train/test nets. Must be unspecified or
// specified once per net.
//
// By default, all states will have solver = true;
// train_state will have phase = TRAIN,
// and all test_state's will have phase = TEST.
// Other defaults are set according to the NetState defaults.
optional
NetState
train_state
=
26
;
repeated
NetState
test_state
=
27
;
// Evaluation type.
optional
string
eval_type
=
41
[
default
=
"classification"
];
// ap_version: different ways of computing Average Precision.
// Check https://sanchom.wordpress.com/tag/average-precision/ for details.
// 11point: the 11-point interpolated average precision. Used in VOC2007.
// MaxIntegral: maximally interpolated AP. Used in VOC2012/ILSVRC.
// Integral: the natural integral of the precision-recall curve.
optional
string
ap_version
=
42
[
default
=
"Integral"
];
// If true, display per class result.
optional
bool
show_per_class_result
=
44
[
default
=
false
];
// The number of iterations for each test net.
repeated
int32
test_iter
=
3
;
// The number of iterations between two testing phases.
optional
int32
test_interval
=
4
[
default
=
0
];
optional
bool
test_compute_loss
=
19
[
default
=
false
];
// If true, run an initial test pass before the first iteration,
// ensuring memory availability and printing the starting value of the loss.
optional
bool
test_initialization
=
32
[
default
=
true
];
optional
float
base_lr
=
5
;
// The base learning rate
// the number of iterations between displaying info. If display = 0, no info
// will be displayed.
optional
int32
display
=
6
;
// Display the loss averaged over the last average_loss iterations
optional
int32
average_loss
=
33
[
default
=
1
];
optional
int32
max_iter
=
7
;
// the maximum number of iterations
// accumulate gradients over `iter_size` x `batch_size` instances
optional
int32
iter_size
=
36
[
default
=
1
];
// The learning rate decay policy. The currently implemented learning rate
// policies are as follows:
// - fixed: always return base_lr.
// - step: return base_lr * gamma ^ (floor(iter / step))
// - exp: return base_lr * gamma ^ iter
// - inv: return base_lr * (1 + gamma * iter) ^ (- power)
// - multistep: similar to step but it allows non uniform steps defined by
// stepvalue
// - poly: the effective learning rate follows a polynomial decay, to be
// zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power)
// - sigmoid: the effective learning rate follows a sigmod decay
// return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
// - plateau: decreases lr
// if the minimum loss isn't updated for 'plateau_winsize' iters
//
// where base_lr, max_iter, gamma, step, stepvalue and power are defined
// in the solver parameter protocol buffer, and iter is the current iteration.
optional
string
lr_policy
=
8
;
optional
float
gamma
=
9
;
// The parameter to compute the learning rate.
optional
float
power
=
10
;
// The parameter to compute the learning rate.
optional
float
momentum
=
11
;
// The momentum value.
optional
float
weight_decay
=
12
;
// The weight decay.
// regularization types supported: L1 and L2
// controlled by weight_decay
optional
string
regularization_type
=
29
[
default
=
"L2"
];
// the stepsize for learning rate policy "step"
optional
int32
stepsize
=
13
;
// the stepsize for learning rate policy "multistep"
repeated
int32
stepvalue
=
34
;
// the stepsize for learning rate policy "plateau"
repeated
int32
plateau_winsize
=
43
;
// Set clip_gradients to >= 0 to clip parameter gradients to that L2 norm,
// whenever their actual L2 norm is larger.
optional
float
clip_gradients
=
35
[
default
=
-
1
];
optional
int32
snapshot
=
14
[
default
=
0
];
// The snapshot interval
optional
string
snapshot_prefix
=
15
;
// The prefix for the snapshot.
// whether to snapshot diff in the results or not. Snapshotting diff will help
// debugging but the final protocol buffer size will be much larger.
optional
bool
snapshot_diff
=
16
[
default
=
false
];
enum
SnapshotFormat
{
HDF5
=
0
;
BINARYPROTO
=
1
;
}
optional
SnapshotFormat
snapshot_format
=
37
[
default
=
BINARYPROTO
];
// the mode solver will use: 0 for CPU and 1 for GPU. Use GPU in default.
enum
SolverMode
{
CPU
=
0
;
GPU
=
1
;
}
optional
SolverMode
solver_mode
=
17
[
default
=
GPU
];
// the device_id will that be used in GPU mode. Use device_id = 0 in default.
optional
int32
device_id
=
18
[
default
=
0
];
// If non-negative, the seed with which the Solver will initialize the Caffe
// random number generator -- useful for reproducible results. Otherwise,
// (and by default) initialize using a seed derived from the system clock.
optional
int64
random_seed
=
20
[
default
=
-
1
];
// type of the solver
optional
string
type
=
40
[
default
=
"SGD"
];
// numerical stability for RMSProp, AdaGrad and AdaDelta and Adam
optional
float
delta
=
31
[
default
=
1e-8
];
// parameters for the Adam solver
optional
float
momentum2
=
39
[
default
=
0.999
];
// RMSProp decay value
// MeanSquare(t) = rms_decay*MeanSquare(t-1) + (1-rms_decay)*SquareGradient(t)
optional
float
rms_decay
=
38
[
default
=
0.99
];
// If true, print information about the state of the net that may help with
// debugging learning problems.
optional
bool
debug_info
=
23
[
default
=
false
];
// If false, don't save a snapshot after training finishes.
optional
bool
snapshot_after_train
=
28
[
default
=
true
];
// DEPRECATED: old solver enum types, use string instead
enum
SolverType
{
SGD
=
0
;
NESTEROV
=
1
;
ADAGRAD
=
2
;
RMSPROP
=
3
;
ADADELTA
=
4
;
ADAM
=
5
;
}
// DEPRECATED: use type instead of solver_type
optional
SolverType
solver_type
=
30
[
default
=
SGD
];
}
// A message that stores the solver snapshots
message
SolverState
{
optional
int32
iter
=
1
;
// The current iteration
optional
string
learned_net
=
2
;
// The file that stores the learned net.
repeated
BlobProto
history
=
3
;
// The history for sgd solvers
optional
int32
current_step
=
4
[
default
=
0
];
// The current step for learning rate
optional
float
minimum_loss
=
5
[
default
=
1E38
];
// Historical minimum loss
optional
int32
iter_last_event
=
6
[
default
=
0
];
// The iteration when last lr-update or min_loss-update happend
}
enum
Phase
{
TRAIN
=
0
;
TEST
=
1
;
}
message
NetState
{
optional
Phase
phase
=
1
[
default
=
TEST
];
optional
int32
level
=
2
[
default
=
0
];
repeated
string
stage
=
3
;
}
message
NetStateRule
{
// Set phase to require the NetState have a particular phase (TRAIN or TEST)
// to meet this rule.
optional
Phase
phase
=
1
;
// Set the minimum and/or maximum levels in which the layer should be used.
// Leave undefined to meet the rule regardless of level.
optional
int32
min_level
=
2
;
optional
int32
max_level
=
3
;
// Customizable sets of stages to include or exclude.
// The net must have ALL of the specified stages and NONE of the specified
// "not_stage"s to meet the rule.
// (Use multiple NetStateRules to specify conjunctions of stages.)
repeated
string
stage
=
4
;
repeated
string
not_stage
=
5
;
}
// Specifies training parameters (multipliers on global learning constants,
// and the name and other settings used for weight sharing).
message
ParamSpec
{
// The names of the parameter blobs -- useful for sharing parameters among
// layers, but never required otherwise. To share a parameter between two
// layers, give it a (non-empty) name.
optional
string
name
=
1
;
// Whether to require shared weights to have the same shape, or just the same
// count -- defaults to STRICT if unspecified.
optional
DimCheckMode
share_mode
=
2
;
enum
DimCheckMode
{
// STRICT (default) requires that num, channels, height, width each match.
STRICT
=
0
;
// PERMISSIVE requires only the count (num*channels*height*width) to match.
PERMISSIVE
=
1
;
}
// The multiplier on the global learning rate for this parameter.
optional
float
lr_mult
=
3
[
default
=
1.0
];
// The multiplier on the global weight decay for this parameter.
optional
float
decay_mult
=
4
[
default
=
1.0
];
}
// NOTE
// Update the next available ID when you add a new LayerParameter field.
//
// LayerParameter next available layer-specific ID: 147 (last added: recurrent_param)
message
LayerParameter
{
optional
string
name
=
1
;
// the layer name
optional
string
type
=
2
;
// the layer type
repeated
string
bottom
=
3
;
// the name of each bottom blob
repeated
string
top
=
4
;
// the name of each top blob
// The train / test phase for computation.
optional
Phase
phase
=
10
;
// The amount of weight to assign each top blob in the objective.
// Each layer assigns a default value, usually of either 0 or 1,
// to each top blob.
repeated
float
loss_weight
=
5
;
// Specifies training parameters (multipliers on global learning constants,
// and the name and other settings used for weight sharing).
repeated
ParamSpec
param
=
6
;
// The blobs containing the numeric parameters of the layer.
repeated
BlobProto
blobs
=
7
;
// Specifies whether to backpropagate to each bottom. If unspecified,
// Caffe will automatically infer whether each input needs backpropagation
// to compute parameter gradients. If set to true for some inputs,
// backpropagation to those inputs is forced; if set false for some inputs,
// backpropagation to those inputs is skipped.
//
// The size must be either 0 or equal to the number of bottoms.
repeated
bool
propagate_down
=
11
;
// Rules controlling whether and when a layer is included in the network,
// based on the current NetState. You may specify a non-zero number of rules
// to include OR exclude, but not both. If no include or exclude rules are
// specified, the layer is always included. If the current NetState meets
// ANY (i.e., one or more) of the specified rules, the layer is
// included/excluded.
repeated
NetStateRule
include
=
8
;
repeated
NetStateRule
exclude
=
9
;
// Parameters for data pre-processing.
optional
TransformationParameter
transform_param
=
100
;
// Parameters shared by loss layers.
optional
LossParameter
loss_param
=
101
;
// Layer type-specific parameters.
//
// Note: certain layers may have more than one computational engine
// for their implementation. These layers include an Engine type and
// engine parameter for selecting the implementation.
// The default for the engine is set by the ENGINE switch at compile-time.
optional
AccuracyParameter
accuracy_param
=
102
;
optional
AnnotatedDataParameter
annotated_data_param
=
200
;
optional
ArgMaxParameter
argmax_param
=
103
;
optional
BatchNormParameter
batch_norm_param
=
139
;
optional
BiasParameter
bias_param
=
141
;
optional
ConcatParameter
concat_param
=
104
;
optional
ContrastiveLossParameter
contrastive_loss_param
=
105
;
optional
ConvolutionParameter
convolution_param
=
106
;
optional
CropParameter
crop_param
=
144
;
optional
DataParameter
data_param
=
107
;
optional
DetectionEvaluateParameter
detection_evaluate_param
=
205
;
optional
DetectionOutputParameter
detection_output_param
=
204
;
optional
DropoutParameter
dropout_param
=
108
;
optional
DummyDataParameter
dummy_data_param
=
109
;
optional
EltwiseParameter
eltwise_param
=
110
;
optional
ELUParameter
elu_param
=
140
;
optional
EmbedParameter
embed_param
=
137
;
optional
ExpParameter
exp_param
=
111
;
optional
FlattenParameter
flatten_param
=
135
;
optional
HDF5DataParameter
hdf5_data_param
=
112
;
optional
HDF5OutputParameter
hdf5_output_param
=
113
;
optional
HingeLossParameter
hinge_loss_param
=
114
;
optional
ImageDataParameter
image_data_param
=
115
;
optional
InfogainLossParameter
infogain_loss_param
=
116
;
optional
InnerProductParameter
inner_product_param
=
117
;
optional
InputParameter
input_param
=
143
;
optional
LogParameter
log_param
=
134
;
optional
LRNParameter
lrn_param
=
118
;
optional
MemoryDataParameter
memory_data_param
=
119
;
optional
MultiBoxLossParameter
multibox_loss_param
=
201
;
optional
MVNParameter
mvn_param
=
120
;
optional
NormalizeParameter
norm_param
=
206
;
optional
ParameterParameter
parameter_param
=
145
;
optional
PermuteParameter
permute_param
=
202
;
optional
PoolingParameter
pooling_param
=
121
;
optional
PowerParameter
power_param
=
122
;
optional
PReLUParameter
prelu_param
=
131
;
optional
PriorBoxParameter
prior_box_param
=
203
;
optional
PythonParameter
python_param
=
130
;
optional
RecurrentParameter
recurrent_param
=
146
;
optional
ReductionParameter
reduction_param
=
136
;
optional
ReLUParameter
relu_param
=
123
;
optional
ReshapeParameter
reshape_param
=
133
;
optional
ScaleParameter
scale_param
=
142
;
optional
SigmoidParameter
sigmoid_param
=
124
;
optional
SoftmaxParameter
softmax_param
=
125
;
optional
SPPParameter
spp_param
=
132
;
optional
SliceParameter
slice_param
=
126
;
optional
TanHParameter
tanh_param
=
127
;
optional
ThresholdParameter
threshold_param
=
128
;
optional
TileParameter
tile_param
=
138
;
optional
VideoDataParameter
video_data_param
=
207
;
optional
WindowDataParameter
window_data_param
=
129
;
optional
AxpyParameter
axpy_param
=
210
;
optional
UpsampleParameter
upsample_param
=
211
;
optional
ROIPoolingParameter
roi_pooling_param
=
212
;
optional
ShuffleChannelParameter
shuffle_channel_param
=
213
;
}
// Message that stores parameters used to apply transformation
// to the data layer's data
message
TransformationParameter
{
// For data pre-processing, we can do simple scaling and subtracting the
// data mean, if provided. Note that the mean subtraction is always carried
// out before scaling.
optional
float
scale
=
1
[
default
=
1
];
// Specify if we want to randomly mirror data.
optional
bool
mirror
=
2
[
default
=
false
];
// Specify if we would like to randomly crop an image.
optional
uint32
crop_size
=
3
[
default
=
0
];
optional
uint32
crop_h
=
11
[
default
=
0
];
optional
uint32
crop_w
=
12
[
default
=
0
];
// mean_file and mean_value cannot be specified at the same time
optional
string
mean_file
=
4
;
// if specified can be repeated once (would substract it from all the channels)
// or can be repeated the same number of times as channels
// (would subtract them from the corresponding channel)
repeated
float
mean_value
=
5
;
// Force the decoded image to have 3 color channels.
optional
bool
force_color
=
6
[
default
=
false
];
// Force the decoded image to have 1 color channels.
optional
bool
force_gray
=
7
[
default
=
false
];
// Resize policy
optional
ResizeParameter
resize_param
=
8
;
// Noise policy
optional
NoiseParameter
noise_param
=
9
;
// Distortion policy
optional
DistortionParameter
distort_param
=
13
;
// Expand policy
optional
ExpansionParameter
expand_param
=
14
;
// Constraint for emitting the annotation after transformation.
optional
EmitConstraint
emit_constraint
=
10
;
}
// Message that stores parameters used by data transformer for resize policy
message
ResizeParameter
{
//Probability of using this resize policy
optional
float
prob
=
1
[
default
=
1
];
enum
Resize_mode
{
WARP
=
1
;
FIT_SMALL_SIZE
=
2
;
FIT_LARGE_SIZE_AND_PAD
=
3
;
}
optional
Resize_mode
resize_mode
=
2
[
default
=
WARP
];
optional
uint32
height
=
3
[
default
=
0
];
optional
uint32
width
=
4
[
default
=
0
];
// A parameter used to update bbox in FIT_SMALL_SIZE mode.
optional
uint32
height_scale
=
8
[
default
=
0
];
optional
uint32
width_scale
=
9
[
default
=
0
];
enum
Pad_mode
{
CONSTANT
=
1
;
MIRRORED
=
2
;
REPEAT_NEAREST
=
3
;
}
// Padding mode for BE_SMALL_SIZE_AND_PAD mode and object centering
optional
Pad_mode
pad_mode
=
5
[
default
=
CONSTANT
];
// if specified can be repeated once (would fill all the channels)
// or can be repeated the same number of times as channels
// (would use it them to the corresponding channel)
repeated
float
pad_value
=
6
;
enum
Interp_mode
{
//Same as in OpenCV
LINEAR
=
1
;
AREA
=
2
;
NEAREST
=
3
;
CUBIC
=
4
;
LANCZOS4
=
5
;
}
//interpolation for for resizing
repeated
Interp_mode
interp_mode
=
7
;
}
message
SaltPepperParameter
{
//Percentage of pixels
optional
float
fraction
=
1
[
default
=
0
];
repeated
float
value
=
2
;
}
// Message that stores parameters used by data transformer for transformation
// policy
message
NoiseParameter
{
//Probability of using this resize policy
optional
float
prob
=
1
[
default
=
0
];
// Histogram equalized
optional
bool
hist_eq
=
2
[
default
=
false
];
// Color inversion
optional
bool
inverse
=
3
[
default
=
false
];
// Grayscale
optional
bool
decolorize
=
4
[
default
=
false
];
// Gaussian blur
optional
bool
gauss_blur
=
5
[
default
=
false
];
// JPEG compression quality (-1 = no compression)
optional
float
jpeg
=
6
[
default
=
-
1
];
// Posterization
optional
bool
posterize
=
7
[
default
=
false
];
// Erosion
optional
bool
erode
=
8
[
default
=
false
];
// Salt-and-pepper noise
optional
bool
saltpepper
=
9
[
default
=
false
];
optional
SaltPepperParameter
saltpepper_param
=
10
;
// Local histogram equalization
optional
bool
clahe
=
11
[
default
=
false
];
// Color space conversion
optional
bool
convert_to_hsv
=
12
[
default
=
false
];
// Color space conversion
optional
bool
convert_to_lab
=
13
[
default
=
false
];
}
// Message that stores parameters used by data transformer for distortion policy
message
DistortionParameter
{
// The probability of adjusting brightness.
optional
float
brightness_prob
=
1
[
default
=
0.0
];
// Amount to add to the pixel values within [-delta, delta].
// The possible value is within [0, 255]. Recommend 32.
optional
float
brightness_delta
=
2
[
default
=
0.0
];
// The probability of adjusting contrast.
optional
float
contrast_prob
=
3
[
default
=
0.0
];
// Lower bound for random contrast factor. Recommend 0.5.
optional
float
contrast_lower
=
4
[
default
=
0.0
];
// Upper bound for random contrast factor. Recommend 1.5.
optional
float
contrast_upper
=
5
[
default
=
0.0
];
// The probability of adjusting hue.
optional
float
hue_prob
=
6
[
default
=
0.0
];
// Amount to add to the hue channel within [-delta, delta].
// The possible value is within [0, 180]. Recommend 36.
optional
float
hue_delta
=
7
[
default
=
0.0
];
// The probability of adjusting saturation.
optional
float
saturation_prob
=
8
[
default
=
0.0
];
// Lower bound for the random saturation factor. Recommend 0.5.
optional
float
saturation_lower
=
9
[
default
=
0.0
];
// Upper bound for the random saturation factor. Recommend 1.5.
optional
float
saturation_upper
=
10
[
default
=
0.0
];
// The probability of randomly order the image channels.
optional
float
random_order_prob
=
11
[
default
=
0.0
];
}
// Message that stores parameters used by data transformer for expansion policy
message
ExpansionParameter
{
//Probability of using this expansion policy
optional
float
prob
=
1
[
default
=
1
];
// The ratio to expand the image.
optional
float
max_expand_ratio
=
2
[
default
=
1.
];
}
// Message that stores parameters shared by loss layers
message
LossParameter
{
// If specified, ignore instances with the given label.
optional
int32
ignore_label
=
1
;
// How to normalize the loss for loss layers that aggregate across batches,
// spatial dimensions, or other dimensions. Currently only implemented in
// SoftmaxWithLoss and SigmoidCrossEntropyLoss layers.
enum
NormalizationMode
{
// Divide by the number of examples in the batch times spatial dimensions.
// Outputs that receive the ignore label will NOT be ignored in computing
// the normalization factor.
FULL
=
0
;
// Divide by the total number of output locations that do not take the
// ignore_label. If ignore_label is not set, this behaves like FULL.
VALID
=
1
;
// Divide by the batch size.
BATCH_SIZE
=
2
;
// Do not normalize the loss.
NONE
=
3
;
}
// For historical reasons, the default normalization for
// SigmoidCrossEntropyLoss is BATCH_SIZE and *not* VALID.
optional
NormalizationMode
normalization
=
3
[
default
=
VALID
];
// Deprecated. Ignored if normalization is specified. If normalization
// is not specified, then setting this to false will be equivalent to
// normalization = BATCH_SIZE to be consistent with previous behavior.
optional
bool
normalize
=
2
;
}
// Messages that store parameters used by individual layer types follow, in
// alphabetical order.
message
AccuracyParameter
{
// When computing accuracy, count as correct by comparing the true label to
// the top k scoring classes. By default, only compare to the top scoring
// class (i.e. argmax).
optional
uint32
top_k
=
1
[
default
=
1
];
// The "label" axis of the prediction blob, whose argmax corresponds to the
// predicted label -- may be negative to index from the end (e.g., -1 for the
// last axis). For example, if axis == 1 and the predictions are
// (N x C x H x W), the label blob is expected to contain N*H*W ground truth
// labels with integer values in {0, 1, ..., C-1}.
optional
int32
axis
=
2
[
default
=
1
];
// If specified, ignore instances with the given label.
optional
int32
ignore_label
=
3
;
}
message
AnnotatedDataParameter
{
// Define the sampler.
repeated
BatchSampler
batch_sampler
=
1
;
// Store label name and label id in LabelMap format.
optional
string
label_map_file
=
2
;
// If provided, it will replace the AnnotationType stored in each
// AnnotatedDatum.
optional
AnnotatedDatum.AnnotationType
anno_type
=
3
;
}
message
ArgMaxParameter
{
// If true produce pairs (argmax, maxval)
optional
bool
out_max_val
=
1
[
default
=
false
];
optional
uint32
top_k
=
2
[
default
=
1
];
// The axis along which to maximise -- may be negative to index from the
// end (e.g., -1 for the last axis).
// By default ArgMaxLayer maximizes over the flattened trailing dimensions
// for each index of the first / num dimension.
optional
int32
axis
=
3
;
}
message
ConcatParameter
{
// The axis along which to concatenate -- may be negative to index from the
// end (e.g., -1 for the last axis). Other axes must have the
// same dimension for all the bottom blobs.
// By default, ConcatLayer concatenates blobs along the "channels" axis (1).
optional
int32
axis
=
2
[
default
=
1
];
// DEPRECATED: alias for "axis" -- does not support negative indexing.
optional
uint32
concat_dim
=
1
[
default
=
1
];
}
message
BatchNormParameter
{
// If false, accumulate global mean/variance values via a moving average. If
// true, use those accumulated values instead of computing mean/variance
// across the batch.
optional
bool
use_global_stats
=
1
;
// How much does the moving average decay each iteration?
optional
float
moving_average_fraction
=
2
[
default
=
.999
];
// Small value to add to the variance estimate so that we don't divide by
// zero.
optional
float
eps
=
3
[
default
=
1e-5
];
}
message
BiasParameter
{
// The first axis of bottom[0] (the first input Blob) along which to apply
// bottom[1] (the second input Blob). May be negative to index from the end
// (e.g., -1 for the last axis).
//
// For example, if bottom[0] is 4D with shape 100x3x40x60, the output
// top[0] will have the same shape, and bottom[1] may have any of the
// following shapes (for the given value of axis):
// (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
// (axis == 1 == -3) 3; 3x40; 3x40x60
// (axis == 2 == -2) 40; 40x60
// (axis == 3 == -1) 60
// Furthermore, bottom[1] may have the empty shape (regardless of the value of
// "axis") -- a scalar bias.
optional
int32
axis
=
1
[
default
=
1
];
// (num_axes is ignored unless just one bottom is given and the bias is
// a learned parameter of the layer. Otherwise, num_axes is determined by the
// number of axes by the second bottom.)
// The number of axes of the input (bottom[0]) covered by the bias
// parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
// Set num_axes := 0, to add a zero-axis Blob: a scalar.
optional
int32
num_axes
=
2
[
default
=
1
];
// (filler is ignored unless just one bottom is given and the bias is
// a learned parameter of the layer.)
// The initialization for the learned bias parameter.
// Default is the zero (0) initialization, resulting in the BiasLayer
// initially performing the identity operation.
optional
FillerParameter
filler
=
3
;
}
message
ContrastiveLossParameter
{
// margin for dissimilar pair
optional
float
margin
=
1
[
default
=
1.0
];
// The first implementation of this cost did not exactly match the cost of
// Hadsell et al 2006 -- using (margin - d^2) instead of (margin - d)^2.
// legacy_version = false (the default) uses (margin - d)^2 as proposed in the
// Hadsell paper. New models should probably use this version.
// legacy_version = true uses (margin - d^2). This is kept to support /
// reproduce existing models and results
optional
bool
legacy_version
=
2
[
default
=
false
];
}
message
ConvolutionParameter
{
optional
uint32
num_output
=
1
;
// The number of outputs for the layer
optional
bool
bias_term
=
2
[
default
=
true
];
// whether to have bias terms
// Pad, kernel size, and stride are all given as a single value for equal
// dimensions in all spatial dimensions, or once per spatial dimension.
repeated
uint32
pad
=
3
;
// The padding size; defaults to 0
repeated
uint32
kernel_size
=
4
;
// The kernel size
repeated
uint32
stride
=
6
;
// The stride; defaults to 1
// Factor used to dilate the kernel, (implicitly) zero-filling the resulting
// holes. (Kernel dilation is sometimes referred to by its use in the
// algorithme à trous from Holschneider et al. 1987.)
repeated
uint32
dilation
=
18
;
// The dilation; defaults to 1
// For 2D convolution only, the *_h and *_w versions may also be used to
// specify both spatial dimensions.
optional
uint32
pad_h
=
9
[
default
=
0
];
// The padding height (2D only)
optional
uint32
pad_w
=
10
[
default
=
0
];
// The padding width (2D only)
optional
uint32
kernel_h
=
11
;
// The kernel height (2D only)
optional
uint32
kernel_w
=
12
;
// The kernel width (2D only)
optional
uint32
stride_h
=
13
;
// The stride height (2D only)
optional
uint32
stride_w
=
14
;
// The stride width (2D only)
optional
uint32
group
=
5
[
default
=
1
];
// The group size for group conv
optional
FillerParameter
weight_filler
=
7
;
// The filler for the weight
optional
FillerParameter
bias_filler
=
8
;
// The filler for the bias
enum
Engine
{
DEFAULT
=
0
;
CAFFE
=
1
;
CUDNN
=
2
;
}
optional
Engine
engine
=
15
[
default
=
DEFAULT
];
// The axis to interpret as "channels" when performing convolution.
// Preceding dimensions are treated as independent inputs;
// succeeding dimensions are treated as "spatial".
// With (N, C, H, W) inputs, and axis == 1 (the default), we perform
// N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for
// groups g>1) filters across the spatial axes (H, W) of the input.
// With (N, C, D, H, W) inputs, and axis == 1, we perform
// N independent 3D convolutions, sliding (C/g)-channels
// filters across the spatial axes (D, H, W) of the input.
optional
int32
axis
=
16
[
default
=
1
];
// Whether to force use of the general ND convolution, even if a specific
// implementation for blobs of the appropriate number of spatial dimensions
// is available. (Currently, there is only a 2D-specific convolution
// implementation; for input blobs with num_axes != 2, this option is
// ignored and the ND implementation will be used.)
optional
bool
force_nd_im2col
=
17
[
default
=
false
];
}
message
CropParameter
{
// To crop, elements of the first bottom are selected to fit the dimensions
// of the second, reference bottom. The crop is configured by
// - the crop `axis` to pick the dimensions for cropping
// - the crop `offset` to set the shift for all/each dimension
// to align the cropped bottom with the reference bottom.
// All dimensions up to but excluding `axis` are preserved, while
// the dimensions including and trailing `axis` are cropped.
// If only one `offset` is set, then all dimensions are offset by this amount.
// Otherwise, the number of offsets must equal the number of cropped axes to
// shift the crop in each dimension accordingly.
// Note: standard dimensions are N,C,H,W so the default is a spatial crop,
// and `axis` may be negative to index from the end (e.g., -1 for the last
// axis).
optional
int32
axis
=
1
[
default
=
2
];
repeated
uint32
offset
=
2
;
}
message
DataParameter
{
enum
DB
{
LEVELDB
=
0
;
LMDB
=
1
;
}
// Specify the data source.
optional
string
source
=
1
;
// Specify the batch size.
optional
uint32
batch_size
=
4
;
// The rand_skip variable is for the data layer to skip a few data points
// to avoid all asynchronous sgd clients to start at the same point. The skip
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not
// be larger than the number of keys in the database.
// DEPRECATED. Each solver accesses a different subset of the database.
optional
uint32
rand_skip
=
7
[
default
=
0
];
optional
DB
backend
=
8
[
default
=
LEVELDB
];
// DEPRECATED. See TransformationParameter. For data pre-processing, we can do
// simple scaling and subtracting the data mean, if provided. Note that the
// mean subtraction is always carried out before scaling.
optional
float
scale
=
2
[
default
=
1
];
optional
string
mean_file
=
3
;
// DEPRECATED. See TransformationParameter. Specify if we would like to randomly
// crop an image.
optional
uint32
crop_size
=
5
[
default
=
0
];
// DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror
// data.
optional
bool
mirror
=
6
[
default
=
false
];
// Force the encoded image to have 3 color channels
optional
bool
force_encoded_color
=
9
[
default
=
false
];
// Prefetch queue (Number of batches to prefetch to host memory, increase if
// data access bandwidth varies).
optional
uint32
prefetch
=
10
[
default
=
4
];
}
// Message that store parameters used by DetectionEvaluateLayer
message
DetectionEvaluateParameter
{
// Number of classes that are actually predicted. Required!
optional
uint32
num_classes
=
1
;
// Label id for background class. Needed for sanity check so that
// background class is neither in the ground truth nor the detections.
optional
uint32
background_label_id
=
2
[
default
=
0
];
// Threshold for deciding true/false positive.
optional
float
overlap_threshold
=
3
[
default
=
0.5
];
// If true, also consider difficult ground truth for evaluation.
optional
bool
evaluate_difficult_gt
=
4
[
default
=
true
];
// A file which contains a list of names and sizes with same order
// of the input DB. The file is in the following format:
// name height width
// ...
// If provided, we will scale the prediction and ground truth NormalizedBBox
// for evaluation.
optional
string
name_size_file
=
5
;
// The resize parameter used in converting NormalizedBBox to original image.
optional
ResizeParameter
resize_param
=
6
;
}
message
NonMaximumSuppressionParameter
{
// Threshold to be used in nms.
optional
float
nms_threshold
=
1
[
default
=
0.3
];
// Maximum number of results to be kept.
optional
int32
top_k
=
2
;
// Parameter for adaptive nms.
optional
float
eta
=
3
[
default
=
1.0
];
}
message
SaveOutputParameter
{
// Output directory. If not empty, we will save the results.
optional
string
output_directory
=
1
;
// Output name prefix.
optional
string
output_name_prefix
=
2
;
// Output format.
// VOC - PASCAL VOC output format.
// COCO - MS COCO output format.
optional
string
output_format
=
3
;
// If you want to output results, must also provide the following two files.
// Otherwise, we will ignore saving results.
// label map file.
optional
string
label_map_file
=
4
;
// A file which contains a list of names and sizes with same order
// of the input DB. The file is in the following format:
// name height width
// ...
optional
string
name_size_file
=
5
;
// Number of test images. It can be less than the lines specified in
// name_size_file. For example, when we only want to evaluate on part
// of the test images.
optional
uint32
num_test_image
=
6
;
// The resize parameter used in saving the data.
optional
ResizeParameter
resize_param
=
7
;
}
// Message that store parameters used by DetectionOutputLayer
message
DetectionOutputParameter
{
// Number of classes to be predicted. Required!
optional
uint32
num_classes
=
1
;
// If true, bounding box are shared among different classes.
optional
bool
share_location
=
2
[
default
=
true
];
// Background label id. If there is no background class,
// set it as -1.
optional
int32
background_label_id
=
3
[
default
=
0
];
// Parameters used for non maximum suppression.
optional
NonMaximumSuppressionParameter
nms_param
=
4
;
// Parameters used for saving detection results.
optional
SaveOutputParameter
save_output_param
=
5
;
// Type of coding method for bbox.
optional
PriorBoxParameter.CodeType
code_type
=
6
[
default
=
CORNER
];
// If true, variance is encoded in target; otherwise we need to adjust the
// predicted offset accordingly.
optional
bool
variance_encoded_in_target
=
8
[
default
=
false
];
// Number of total bboxes to be kept per image after nms step.
// -1 means keeping all bboxes after nms step.
optional
int32
keep_top_k
=
7
[
default
=
-
1
];
// Only consider detections whose confidences are larger than a threshold.
// If not provided, consider all boxes.
optional
float
confidence_threshold
=
9
;
// If true, visualize the detection results.
optional
bool
visualize
=
10
[
default
=
false
];
// The threshold used to visualize the detection results.
optional
float
visualize_threshold
=
11
;
// If provided, save outputs to video file.
optional
string
save_file
=
12
;
}
message
DropoutParameter
{
optional
float
dropout_ratio
=
1
[
default
=
0.5
];
// dropout ratio
}
// DummyDataLayer fills any number of arbitrarily shaped blobs with random
// (or constant) data generated by "Fillers" (see "message FillerParameter").
message
DummyDataParameter
{
// This layer produces N >= 1 top blobs. DummyDataParameter must specify 1 or N
// shape fields, and 0, 1 or N data_fillers.
//
// If 0 data_fillers are specified, ConstantFiller with a value of 0 is used.
// If 1 data_filler is specified, it is applied to all top blobs. If N are
// specified, the ith is applied to the ith top blob.
repeated
FillerParameter
data_filler
=
1
;
repeated
BlobShape
shape
=
6
;
// 4D dimensions -- deprecated. Use "shape" instead.
repeated
uint32
num
=
2
;
repeated
uint32
channels
=
3
;
repeated
uint32
height
=
4
;
repeated
uint32
width
=
5
;
}
message
EltwiseParameter
{
enum
EltwiseOp
{
PROD
=
0
;
SUM
=
1
;
MAX
=
2
;
}
optional
EltwiseOp
operation
=
1
[
default
=
SUM
];
// element-wise operation
repeated
float
coeff
=
2
;
// blob-wise coefficient for SUM operation
// Whether to use an asymptotically slower (for >2 inputs) but stabler method
// of computing the gradient for the PROD operation. (No effect for SUM op.)
optional
bool
stable_prod_grad
=
3
[
default
=
true
];
}
// Message that stores parameters used by ELULayer
message
ELUParameter
{
// Described in:
// Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate
// Deep Network Learning by Exponential Linear Units (ELUs). arXiv
optional
float
alpha
=
1
[
default
=
1
];
}
// Message that stores parameters used by EmbedLayer
message
EmbedParameter
{
optional
uint32
num_output
=
1
;
// The number of outputs for the layer
// The input is given as integers to be interpreted as one-hot
// vector indices with dimension num_input. Hence num_input should be
// 1 greater than the maximum possible input value.
optional
uint32
input_dim
=
2
;
optional
bool
bias_term
=
3
[
default
=
true
];
// Whether to use a bias term
optional
FillerParameter
weight_filler
=
4
;
// The filler for the weight
optional
FillerParameter
bias_filler
=
5
;
// The filler for the bias
}
// Message that stores parameters used by ExpLayer
message
ExpParameter
{
// ExpLayer computes outputs y = base ^ (shift + scale * x), for base > 0.
// Or if base is set to the default (-1), base is set to e,
// so y = exp(shift + scale * x).
optional
float
base
=
1
[
default
=
-
1.0
];
optional
float
scale
=
2
[
default
=
1.0
];
optional
float
shift
=
3
[
default
=
0.0
];
}
/// Message that stores parameters used by FlattenLayer
message
FlattenParameter
{
// The first axis to flatten: all preceding axes are retained in the output.
// May be negative to index from the end (e.g., -1 for the last axis).
optional
int32
axis
=
1
[
default
=
1
];
// The last axis to flatten: all following axes are retained in the output.
// May be negative to index from the end (e.g., the default -1 for the last
// axis).
optional
int32
end_axis
=
2
[
default
=
-
1
];
}
// Message that stores parameters used by HDF5DataLayer
message
HDF5DataParameter
{
// Specify the data source.
optional
string
source
=
1
;
// Specify the batch size.
optional
uint32
batch_size
=
2
;
// Specify whether to shuffle the data.
// If shuffle == true, the ordering of the HDF5 files is shuffled,
// and the ordering of data within any given HDF5 file is shuffled,
// but data between different files are not interleaved; all of a file's
// data are output (in a random order) before moving onto another file.
optional
bool
shuffle
=
3
[
default
=
false
];
}
message
HDF5OutputParameter
{
optional
string
file_name
=
1
;
}
message
HingeLossParameter
{
enum
Norm
{
L1
=
1
;
L2
=
2
;
}
// Specify the Norm to use L1 or L2
optional
Norm
norm
=
1
[
default
=
L1
];
}
message
ImageDataParameter
{
// Specify the data source.
optional
string
source
=
1
;
// Specify the batch size.
optional
uint32
batch_size
=
4
[
default
=
1
];
// The rand_skip variable is for the data layer to skip a few data points
// to avoid all asynchronous sgd clients to start at the same point. The skip
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not
// be larger than the number of keys in the database.
optional
uint32
rand_skip
=
7
[
default
=
0
];
// Whether or not ImageLayer should shuffle the list of files at every epoch.
optional
bool
shuffle
=
8
[
default
=
false
];
// It will also resize images if new_height or new_width are not zero.
optional
uint32
new_height
=
9
[
default
=
0
];
optional
uint32
new_width
=
10
[
default
=
0
];
// Specify if the images are color or gray
optional
bool
is_color
=
11
[
default
=
true
];
// DEPRECATED. See TransformationParameter. For data pre-processing, we can do
// simple scaling and subtracting the data mean, if provided. Note that the
// mean subtraction is always carried out before scaling.
optional
float
scale
=
2
[
default
=
1
];
optional
string
mean_file
=
3
;
// DEPRECATED. See TransformationParameter. Specify if we would like to randomly
// crop an image.
optional
uint32
crop_size
=
5
[
default
=
0
];
// DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror
// data.
optional
bool
mirror
=
6
[
default
=
false
];
optional
string
root_folder
=
12
[
default
=
""
];
}
message
InfogainLossParameter
{
// Specify the infogain matrix source.
optional
string
source
=
1
;
}
message
InnerProductParameter
{
optional
uint32
num_output
=
1
;
// The number of outputs for the layer
optional
bool
bias_term
=
2
[
default
=
true
];
// whether to have bias terms
optional
FillerParameter
weight_filler
=
3
;
// The filler for the weight
optional
FillerParameter
bias_filler
=
4
;
// The filler for the bias
// The first axis to be lumped into a single inner product computation;
// all preceding axes are retained in the output.
// May be negative to index from the end (e.g., -1 for the last axis).
optional
int32
axis
=
5
[
default
=
1
];
// Specify whether to transpose the weight matrix or not.
// If transpose == true, any operations will be performed on the transpose
// of the weight matrix. The weight matrix itself is not going to be transposed
// but rather the transfer flag of operations will be toggled accordingly.
optional
bool
transpose
=
6
[
default
=
false
];
}
message
InputParameter
{
// This layer produces N >= 1 top blob(s) to be assigned manually.
// Define N shapes to set a shape for each top.
// Define 1 shape to set the same shape for every top.
// Define no shape to defer to reshaping manually.
repeated
BlobShape
shape
=
1
;
}
// Message that stores parameters used by LogLayer
message
LogParameter
{
// LogLayer computes outputs y = log_base(shift + scale * x), for base > 0.
// Or if base is set to the default (-1), base is set to e,
// so y = ln(shift + scale * x) = log_e(shift + scale * x)
optional
float
base
=
1
[
default
=
-
1.0
];
optional
float
scale
=
2
[
default
=
1.0
];
optional
float
shift
=
3
[
default
=
0.0
];
}
// Message that stores parameters used by LRNLayer
message
LRNParameter
{
optional
uint32
local_size
=
1
[
default
=
5
];
optional
float
alpha
=
2
[
default
=
1.
];
optional
float
beta
=
3
[
default
=
0.75
];
enum
NormRegion
{
ACROSS_CHANNELS
=
0
;
WITHIN_CHANNEL
=
1
;
}
optional
NormRegion
norm_region
=
4
[
default
=
ACROSS_CHANNELS
];
optional
float
k
=
5
[
default
=
1.
];
enum
Engine
{
DEFAULT
=
0
;
CAFFE
=
1
;
CUDNN
=
2
;
}
optional
Engine
engine
=
6
[
default
=
DEFAULT
];
}
message
MemoryDataParameter
{
optional
uint32
batch_size
=
1
;
optional
uint32
channels
=
2
;
optional
uint32
height
=
3
;
optional
uint32
width
=
4
;
}
// Message that store parameters used by MultiBoxLossLayer
message
MultiBoxLossParameter
{
// Localization loss type.
enum
LocLossType
{
L2
=
0
;
SMOOTH_L1
=
1
;
}
optional
LocLossType
loc_loss_type
=
1
[
default
=
SMOOTH_L1
];
// Confidence loss type.
enum
ConfLossType
{
SOFTMAX
=
0
;
LOGISTIC
=
1
;
}
optional
ConfLossType
conf_loss_type
=
2
[
default
=
SOFTMAX
];
// Weight for localization loss.
optional
float
loc_weight
=
3
[
default
=
1.0
];
// Number of classes to be predicted. Required!
optional
uint32
num_classes
=
4
;
// If true, bounding box are shared among different classes.
optional
bool
share_location
=
5
[
default
=
true
];
// Matching method during training.
enum
MatchType
{
BIPARTITE
=
0
;
PER_PREDICTION
=
1
;
}
optional
MatchType
match_type
=
6
[
default
=
PER_PREDICTION
];
// If match_type is PER_PREDICTION, use overlap_threshold to
// determine the extra matching bboxes.
optional
float
overlap_threshold
=
7
[
default
=
0.5
];
// Use prior for matching.
optional
bool
use_prior_for_matching
=
8
[
default
=
true
];
// Background label id.
optional
uint32
background_label_id
=
9
[
default
=
0
];
// If true, also consider difficult ground truth.
optional
bool
use_difficult_gt
=
10
[
default
=
true
];
// If true, perform negative mining.
// DEPRECATED: use mining_type instead.
optional
bool
do_neg_mining
=
11
;
// The negative/positive ratio.
optional
float
neg_pos_ratio
=
12
[
default
=
3.0
];
// The negative overlap upperbound for the unmatched predictions.
optional
float
neg_overlap
=
13
[
default
=
0.5
];
// Type of coding method for bbox.
optional
PriorBoxParameter.CodeType
code_type
=
14
[
default
=
CORNER
];
// If true, encode the variance of prior box in the loc loss target instead of
// in bbox.
optional
bool
encode_variance_in_target
=
16
[
default
=
false
];
// If true, map all object classes to agnostic class. It is useful for learning
// objectness detector.
optional
bool
map_object_to_agnostic
=
17
[
default
=
false
];
// If true, ignore cross boundary bbox during matching.
// Cross boundary bbox is a bbox who is outside of the image region.
optional
bool
ignore_cross_boundary_bbox
=
18
[
default
=
false
];
// If true, only backpropagate on corners which are inside of the image
// region when encode_type is CORNER or CORNER_SIZE.
optional
bool
bp_inside
=
19
[
default
=
false
];
// Mining type during training.
// NONE : use all negatives.
// MAX_NEGATIVE : select negatives based on the score.
// HARD_EXAMPLE : select hard examples based on "Training Region-based Object Detectors with Online Hard Example Mining", Shrivastava et.al.
enum
MiningType
{
NONE
=
0
;
MAX_NEGATIVE
=
1
;
HARD_EXAMPLE
=
2
;
}
optional
MiningType
mining_type
=
20
[
default
=
MAX_NEGATIVE
];
// Parameters used for non maximum suppression durig hard example mining.
optional
NonMaximumSuppressionParameter
nms_param
=
21
;
optional
int32
sample_size
=
22
[
default
=
64
];
optional
bool
use_prior_for_nms
=
23
[
default
=
false
];
}
message
MVNParameter
{
// This parameter can be set to false to normalize mean only
optional
bool
normalize_variance
=
1
[
default
=
true
];
// This parameter can be set to true to perform DNN-like MVN
optional
bool
across_channels
=
2
[
default
=
false
];
// Epsilon for not dividing by zero while normalizing variance
optional
float
eps
=
3
[
default
=
1e-9
];
}
// Message that stores parameters used by NormalizeLayer
message
NormalizeParameter
{
optional
bool
across_spatial
=
1
[
default
=
true
];
// Initial value of scale. Default is 1.0 for all
optional
FillerParameter
scale_filler
=
2
;
// Whether or not scale parameters are shared across channels.
optional
bool
channel_shared
=
3
[
default
=
true
];
// Epsilon for not dividing by zero while normalizing variance
optional
float
eps
=
4
[
default
=
1e-10
];
}
message
ParameterParameter
{
optional
BlobShape
shape
=
1
;
}
message
PermuteParameter
{
// The new orders of the axes of data. Notice it should be with
// in the same range as the input data, and it starts from 0.
// Do not provide repeated order.
repeated
uint32
order
=
1
;
}
message
PoolingParameter
{
enum
PoolMethod
{
MAX
=
0
;
AVE
=
1
;
STOCHASTIC
=
2
;
}
optional
PoolMethod
pool
=
1
[
default
=
MAX
];
// The pooling method
// Pad, kernel size, and stride are all given as a single value for equal
// dimensions in height and width or as Y, X pairs.
optional
uint32
pad
=
4
[
default
=
0
];
// The padding size (equal in Y, X)
optional
uint32
pad_h
=
9
[
default
=
0
];
// The padding height
optional
uint32
pad_w
=
10
[
default
=
0
];
// The padding width
optional
uint32
kernel_size
=
2
;
// The kernel size (square)
optional
uint32
kernel_h
=
5
;
// The kernel height
optional
uint32
kernel_w
=
6
;
// The kernel width
optional
uint32
stride
=
3
[
default
=
1
];
// The stride (equal in Y, X)
optional
uint32
stride_h
=
7
;
// The stride height
optional
uint32
stride_w
=
8
;
// The stride width
enum
Engine
{
DEFAULT
=
0
;
CAFFE
=
1
;
CUDNN
=
2
;
}
optional
Engine
engine
=
11
[
default
=
DEFAULT
];
// If global_pooling then it will pool over the size of the bottom by doing
// kernel_h = bottom->height and kernel_w = bottom->width
optional
bool
global_pooling
=
12
[
default
=
false
];
}
message
PowerParameter
{
// PowerLayer computes outputs y = (shift + scale * x) ^ power.
optional
float
power
=
1
[
default
=
1.0
];
optional
float
scale
=
2
[
default
=
1.0
];
optional
float
shift
=
3
[
default
=
0.0
];
}
// Message that store parameters used by PriorBoxLayer
message
PriorBoxParameter
{
// Encode/decode type.
enum
CodeType
{
CORNER
=
1
;
CENTER_SIZE
=
2
;
CORNER_SIZE
=
3
;
}
// Minimum box size (in pixels). Required!
repeated
float
min_size
=
1
;
// Maximum box size (in pixels). Required!
repeated
float
max_size
=
2
;
// Various of aspect ratios. Duplicate ratios will be ignored.
// If none is provided, we use default ratio 1.
repeated
float
aspect_ratio
=
3
;
// If true, will flip each aspect ratio.
// For example, if there is aspect ratio "r",
// we will generate aspect ratio "1.0/r" as well.
optional
bool
flip
=
4
[
default
=
true
];
// If true, will clip the prior so that it is within [0, 1]
optional
bool
clip
=
5
[
default
=
false
];
// Variance for adjusting the prior bboxes.
repeated
float
variance
=
6
;
// By default, we calculate img_height, img_width, step_x, step_y based on
// bottom[0] (feat) and bottom[1] (img). Unless these values are explicitely
// provided.
// Explicitly provide the img_size.
optional
uint32
img_size
=
7
;
// Either img_size or img_h/img_w should be specified; not both.
optional
uint32
img_h
=
8
;
optional
uint32
img_w
=
9
;
// Explicitly provide the step size.
optional
float
step
=
10
;
// Either step or step_h/step_w should be specified; not both.
optional
float
step_h
=
11
;
optional
float
step_w
=
12
;
// Offset to the top left corner of each cell.
optional
float
offset
=
13
[
default
=
0.5
];
}
message
PythonParameter
{
optional
string
module
=
1
;
optional
string
layer
=
2
;
// This value is set to the attribute `param_str` of the `PythonLayer` object
// in Python before calling the `setup()` method. This could be a number,
// string, dictionary in Python dict format, JSON, etc. You may parse this
// string in `setup` method and use it in `forward` and `backward`.
optional
string
param_str
=
3
[
default
=
''
];
// Whether this PythonLayer is shared among worker solvers during data parallelism.
// If true, each worker solver sequentially run forward from this layer.
// This value should be set true if you are using it as a data layer.
optional
bool
share_in_parallel
=
4
[
default
=
false
];
}
// Message that stores parameters used by RecurrentLayer
message
RecurrentParameter
{
// The dimension of the output (and usually hidden state) representation --
// must be explicitly set to non-zero.
optional
uint32
num_output
=
1
[
default
=
0
];
optional
FillerParameter
weight_filler
=
2
;
// The filler for the weight
optional
FillerParameter
bias_filler
=
3
;
// The filler for the bias
// Whether to enable displaying debug_info in the unrolled recurrent net.
optional
bool
debug_info
=
4
[
default
=
false
];
// Whether to add as additional inputs (bottoms) the initial hidden state
// blobs, and add as additional outputs (tops) the final timestep hidden state
// blobs. The number of additional bottom/top blobs required depends on the
// recurrent architecture -- e.g., 1 for RNNs, 2 for LSTMs.
optional
bool
expose_hidden
=
5
[
default
=
false
];
}
// Message that stores parameters used by ReductionLayer
message
ReductionParameter
{
enum
ReductionOp
{
SUM
=
1
;
ASUM
=
2
;
SUMSQ
=
3
;
MEAN
=
4
;
}
optional
ReductionOp
operation
=
1
[
default
=
SUM
];
// reduction operation
// The first axis to reduce to a scalar -- may be negative to index from the
// end (e.g., -1 for the last axis).
// (Currently, only reduction along ALL "tail" axes is supported; reduction
// of axis M through N, where N < num_axes - 1, is unsupported.)
// Suppose we have an n-axis bottom Blob with shape:
// (d0, d1, d2, ..., d(m-1), dm, d(m+1), ..., d(n-1)).
// If axis == m, the output Blob will have shape
// (d0, d1, d2, ..., d(m-1)),
// and the ReductionOp operation is performed (d0 * d1 * d2 * ... * d(m-1))
// times, each including (dm * d(m+1) * ... * d(n-1)) individual data.
// If axis == 0 (the default), the output Blob always has the empty shape
// (count 1), performing reduction across the entire input --
// often useful for creating new loss functions.
optional
int32
axis
=
2
[
default
=
0
];
optional
float
coeff
=
3
[
default
=
1.0
];
// coefficient for output
}
// Message that stores parameters used by ReLULayer
message
ReLUParameter
{
// Allow non-zero slope for negative inputs to speed up optimization
// Described in:
// Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities
// improve neural network acoustic models. In ICML Workshop on Deep Learning
// for Audio, Speech, and Language Processing.
optional
float
negative_slope
=
1
[
default
=
0
];
enum
Engine
{
DEFAULT
=
0
;
CAFFE
=
1
;
CUDNN
=
2
;
}
optional
Engine
engine
=
2
[
default
=
DEFAULT
];
}
message
ReshapeParameter
{
// Specify the output dimensions. If some of the dimensions are set to 0,
// the corresponding dimension from the bottom layer is used (unchanged).
// Exactly one dimension may be set to -1, in which case its value is
// inferred from the count of the bottom blob and the remaining dimensions.
// For example, suppose we want to reshape a 2D blob "input" with shape 2 x 8:
//
// layer {
// type: "Reshape" bottom: "input" top: "output"
// reshape_param { ... }
// }
//
// If "input" is 2D with shape 2 x 8, then the following reshape_param
// specifications are all equivalent, producing a 3D blob "output" with shape
// 2 x 2 x 4:
//
// reshape_param { shape { dim: 2 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 0 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 0 dim: 2 dim: -1 } }
// reshape_param { shape { dim: 0 dim:-1 dim: 4 } }
//
optional
BlobShape
shape
=
1
;
// axis and num_axes control the portion of the bottom blob's shape that are
// replaced by (included in) the reshape. By default (axis == 0 and
// num_axes == -1), the entire bottom blob shape is included in the reshape,
// and hence the shape field must specify the entire output shape.
//
// axis may be non-zero to retain some portion of the beginning of the input
// shape (and may be negative to index from the end; e.g., -1 to begin the
// reshape after the last axis, including nothing in the reshape,
// -2 to include only the last axis, etc.).
//
// For example, suppose "input" is a 2D blob with shape 2 x 8.
// Then the following ReshapeLayer specifications are all equivalent,
// producing a blob "output" with shape 2 x 2 x 4:
//
// reshape_param { shape { dim: 2 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 2 dim: 4 } axis: 1 }
// reshape_param { shape { dim: 2 dim: 4 } axis: -3 }
//
// num_axes specifies the extent of the reshape.
// If num_axes >= 0 (and axis >= 0), the reshape will be performed only on
// input axes in the range [axis, axis+num_axes].
// num_axes may also be -1, the default, to include all remaining axes
// (starting from axis).
//
// For example, suppose "input" is a 2D blob with shape 2 x 8.
// Then the following ReshapeLayer specifications are equivalent,
// producing a blob "output" with shape 1 x 2 x 8.
//
// reshape_param { shape { dim: 1 dim: 2 dim: 8 } }
// reshape_param { shape { dim: 1 dim: 2 } num_axes: 1 }
// reshape_param { shape { dim: 1 } num_axes: 0 }
//
// On the other hand, these would produce output blob shape 2 x 1 x 8:
//
// reshape_param { shape { dim: 2 dim: 1 dim: 8 } }
// reshape_param { shape { dim: 1 } axis: 1 num_axes: 0 }
//
optional
int32
axis
=
2
[
default
=
0
];
optional
int32
num_axes
=
3
[
default
=
-
1
];
}
message
ScaleParameter
{
// The first axis of bottom[0] (the first input Blob) along which to apply
// bottom[1] (the second input Blob). May be negative to index from the end
// (e.g., -1 for the last axis).
//
// For example, if bottom[0] is 4D with shape 100x3x40x60, the output
// top[0] will have the same shape, and bottom[1] may have any of the
// following shapes (for the given value of axis):
// (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
// (axis == 1 == -3) 3; 3x40; 3x40x60
// (axis == 2 == -2) 40; 40x60
// (axis == 3 == -1) 60
// Furthermore, bottom[1] may have the empty shape (regardless of the value of
// "axis") -- a scalar multiplier.
optional
int32
axis
=
1
[
default
=
1
];
// (num_axes is ignored unless just one bottom is given and the scale is
// a learned parameter of the layer. Otherwise, num_axes is determined by the
// number of axes by the second bottom.)
// The number of axes of the input (bottom[0]) covered by the scale
// parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
// Set num_axes := 0, to multiply with a zero-axis Blob: a scalar.
optional
int32
num_axes
=
2
[
default
=
1
];
// (filler is ignored unless just one bottom is given and the scale is
// a learned parameter of the layer.)
// The initialization for the learned scale parameter.
// Default is the unit (1) initialization, resulting in the ScaleLayer
// initially performing the identity operation.
optional
FillerParameter
filler
=
3
;
// Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but
// may be more efficient). Initialized with bias_filler (defaults to 0).
optional
bool
bias_term
=
4
[
default
=
false
];
optional
FillerParameter
bias_filler
=
5
;
}
message
SigmoidParameter
{
enum
Engine
{
DEFAULT
=
0
;
CAFFE
=
1
;
CUDNN
=
2
;
}
optional
Engine
engine
=
1
[
default
=
DEFAULT
];
}
message
SliceParameter
{
// The axis along which to slice -- may be negative to index from the end
// (e.g., -1 for the last axis).
// By default, SliceLayer concatenates blobs along the "channels" axis (1).
optional
int32
axis
=
3
[
default
=
1
];
repeated
uint32
slice_point
=
2
;
// DEPRECATED: alias for "axis" -- does not support negative indexing.
optional
uint32
slice_dim
=
1
[
default
=
1
];
}
// Message that stores parameters used by SoftmaxLayer, SoftmaxWithLossLayer
message
SoftmaxParameter
{
enum
Engine
{
DEFAULT
=
0
;
CAFFE
=
1
;
CUDNN
=
2
;
}
optional
Engine
engine
=
1
[
default
=
DEFAULT
];
// The axis along which to perform the softmax -- may be negative to index
// from the end (e.g., -1 for the last axis).
// Any other axes will be evaluated as independent softmaxes.
optional
int32
axis
=
2
[
default
=
1
];
}
message
TanHParameter
{
enum
Engine
{
DEFAULT
=
0
;
CAFFE
=
1
;
CUDNN
=
2
;
}
optional
Engine
engine
=
1
[
default
=
DEFAULT
];
}
// Message that stores parameters used by TileLayer
message
TileParameter
{
// The index of the axis to tile.
optional
int32
axis
=
1
[
default
=
1
];
// The number of copies (tiles) of the blob to output.
optional
int32
tiles
=
2
;
}
// Message that stores parameters used by ThresholdLayer
message
ThresholdParameter
{
optional
float
threshold
=
1
[
default
=
0
];
// Strictly positive values
}
message
VideoDataParameter
{
enum
VideoType
{
WEBCAM
=
0
;
VIDEO
=
1
;
}
optional
VideoType
video_type
=
1
[
default
=
WEBCAM
];
optional
int32
device_id
=
2
[
default
=
0
];
optional
string
video_file
=
3
;
// Number of frames to be skipped before processing a frame.
optional
uint32
skip_frames
=
4
[
default
=
0
];
}
message
WindowDataParameter
{
// Specify the data source.
optional
string
source
=
1
;
// For data pre-processing, we can do simple scaling and subtracting the
// data mean, if provided. Note that the mean subtraction is always carried
// out before scaling.
optional
float
scale
=
2
[
default
=
1
];
optional
string
mean_file
=
3
;
// Specify the batch size.
optional
uint32
batch_size
=
4
;
// Specify if we would like to randomly crop an image.
optional
uint32
crop_size
=
5
[
default
=
0
];
// Specify if we want to randomly mirror data.
optional
bool
mirror
=
6
[
default
=
false
];
// Foreground (object) overlap threshold
optional
float
fg_threshold
=
7
[
default
=
0.5
];
// Background (non-object) overlap threshold
optional
float
bg_threshold
=
8
[
default
=
0.5
];
// Fraction of batch that should be foreground objects
optional
float
fg_fraction
=
9
[
default
=
0.25
];
// Amount of contextual padding to add around a window
// (used only by the window_data_layer)
optional
uint32
context_pad
=
10
[
default
=
0
];
// Mode for cropping out a detection window
// warp: cropped window is warped to a fixed size and aspect ratio
// square: the tightest square around the window is cropped
optional
string
crop_mode
=
11
[
default
=
"warp"
];
// cache_images: will load all images in memory for faster access
optional
bool
cache_images
=
12
[
default
=
false
];
// append root_folder to locate images
optional
string
root_folder
=
13
[
default
=
""
];
}
message
SPPParameter
{
enum
PoolMethod
{
MAX
=
0
;
AVE
=
1
;
STOCHASTIC
=
2
;
}
optional
uint32
pyramid_height
=
1
;
optional
PoolMethod
pool
=
2
[
default
=
MAX
];
// The pooling method
enum
Engine
{
DEFAULT
=
0
;
CAFFE
=
1
;
CUDNN
=
2
;
}
optional
Engine
engine
=
6
[
default
=
DEFAULT
];
}
// DEPRECATED: use LayerParameter.
message
V1LayerParameter
{
repeated
string
bottom
=
2
;
repeated
string
top
=
3
;
optional
string
name
=
4
;
repeated
NetStateRule
include
=
32
;
repeated
NetStateRule
exclude
=
33
;
enum
LayerType
{
NONE
=
0
;
ABSVAL
=
35
;
ACCURACY
=
1
;
ARGMAX
=
30
;
BNLL
=
2
;
CONCAT
=
3
;
CONTRASTIVE_LOSS
=
37
;
CONVOLUTION
=
4
;
DATA
=
5
;
DECONVOLUTION
=
39
;
DROPOUT
=
6
;
DUMMY_DATA
=
32
;
EUCLIDEAN_LOSS
=
7
;
ELTWISE
=
25
;
EXP
=
38
;
FLATTEN
=
8
;
HDF5_DATA
=
9
;
HDF5_OUTPUT
=
10
;
HINGE_LOSS
=
28
;
IM2COL
=
11
;
IMAGE_DATA
=
12
;
INFOGAIN_LOSS
=
13
;
INNER_PRODUCT
=
14
;
LRN
=
15
;
MEMORY_DATA
=
29
;
MULTINOMIAL_LOGISTIC_LOSS
=
16
;
MVN
=
34
;
POOLING
=
17
;
POWER
=
26
;
RELU
=
18
;
SIGMOID
=
19
;
SIGMOID_CROSS_ENTROPY_LOSS
=
27
;
SILENCE
=
36
;
SOFTMAX
=
20
;
SOFTMAX_LOSS
=
21
;
SPLIT
=
22
;
SLICE
=
33
;
TANH
=
23
;
WINDOW_DATA
=
24
;
THRESHOLD
=
31
;
}
optional
LayerType
type
=
5
;
repeated
BlobProto
blobs
=
6
;
repeated
string
param
=
1001
;
repeated
DimCheckMode
blob_share_mode
=
1002
;
enum
DimCheckMode
{
STRICT
=
0
;
PERMISSIVE
=
1
;
}
repeated
float
blobs_lr
=
7
;
repeated
float
weight_decay
=
8
;
repeated
float
loss_weight
=
35
;
optional
AccuracyParameter
accuracy_param
=
27
;
optional
ArgMaxParameter
argmax_param
=
23
;
optional
ConcatParameter
concat_param
=
9
;
optional
ContrastiveLossParameter
contrastive_loss_param
=
40
;
optional
ConvolutionParameter
convolution_param
=
10
;
optional
DataParameter
data_param
=
11
;
optional
DropoutParameter
dropout_param
=
12
;
optional
DummyDataParameter
dummy_data_param
=
26
;
optional
EltwiseParameter
eltwise_param
=
24
;
optional
ExpParameter
exp_param
=
41
;
optional
HDF5DataParameter
hdf5_data_param
=
13
;
optional
HDF5OutputParameter
hdf5_output_param
=
14
;
optional
HingeLossParameter
hinge_loss_param
=
29
;
optional
ImageDataParameter
image_data_param
=
15
;
optional
InfogainLossParameter
infogain_loss_param
=
16
;
optional
InnerProductParameter
inner_product_param
=
17
;
optional
LRNParameter
lrn_param
=
18
;
optional
MemoryDataParameter
memory_data_param
=
22
;
optional
MVNParameter
mvn_param
=
34
;
optional
PoolingParameter
pooling_param
=
19
;
optional
PowerParameter
power_param
=
21
;
optional
ReLUParameter
relu_param
=
30
;
optional
SigmoidParameter
sigmoid_param
=
38
;
optional
SoftmaxParameter
softmax_param
=
39
;
optional
SliceParameter
slice_param
=
31
;
optional
TanHParameter
tanh_param
=
37
;
optional
ThresholdParameter
threshold_param
=
25
;
optional
WindowDataParameter
window_data_param
=
20
;
optional
TransformationParameter
transform_param
=
36
;
optional
LossParameter
loss_param
=
42
;
optional
V0LayerParameter
layer
=
1
;
}
// DEPRECATED: V0LayerParameter is the old way of specifying layer parameters
// in Caffe. We keep this message type around for legacy support.
message
V0LayerParameter
{
optional
string
name
=
1
;
// the layer name
optional
string
type
=
2
;
// the string to specify the layer type
// Parameters to specify layers with inner products.
optional
uint32
num_output
=
3
;
// The number of outputs for the layer
optional
bool
biasterm
=
4
[
default
=
true
];
// whether to have bias terms
optional
FillerParameter
weight_filler
=
5
;
// The filler for the weight
optional
FillerParameter
bias_filler
=
6
;
// The filler for the bias
optional
uint32
pad
=
7
[
default
=
0
];
// The padding size
optional
uint32
kernelsize
=
8
;
// The kernel size
optional
uint32
group
=
9
[
default
=
1
];
// The group size for group conv
optional
uint32
stride
=
10
[
default
=
1
];
// The stride
enum
PoolMethod
{
MAX
=
0
;
AVE
=
1
;
STOCHASTIC
=
2
;
}
optional
PoolMethod
pool
=
11
[
default
=
MAX
];
// The pooling method
optional
float
dropout_ratio
=
12
[
default
=
0.5
];
// dropout ratio
optional
uint32
local_size
=
13
[
default
=
5
];
// for local response norm
optional
float
alpha
=
14
[
default
=
1.
];
// for local response norm
optional
float
beta
=
15
[
default
=
0.75
];
// for local response norm
optional
float
k
=
22
[
default
=
1.
];
// For data layers, specify the data source
optional
string
source
=
16
;
// For data pre-processing, we can do simple scaling and subtracting the
// data mean, if provided. Note that the mean subtraction is always carried
// out before scaling.
optional
float
scale
=
17
[
default
=
1
];
optional
string
meanfile
=
18
;
// For data layers, specify the batch size.
optional
uint32
batchsize
=
19
;
// For data layers, specify if we would like to randomly crop an image.
optional
uint32
cropsize
=
20
[
default
=
0
];
// For data layers, specify if we want to randomly mirror data.
optional
bool
mirror
=
21
[
default
=
false
];
// The blobs containing the numeric parameters of the layer
repeated
BlobProto
blobs
=
50
;
// The ratio that is multiplied on the global learning rate. If you want to
// set the learning ratio for one blob, you need to set it for all blobs.
repeated
float
blobs_lr
=
51
;
// The weight decay that is multiplied on the global weight decay.
repeated
float
weight_decay
=
52
;
// The rand_skip variable is for the data layer to skip a few data points
// to avoid all asynchronous sgd clients to start at the same point. The skip
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not
// be larger than the number of keys in the database.
optional
uint32
rand_skip
=
53
[
default
=
0
];
// Fields related to detection (det_*)
// foreground (object) overlap threshold
optional
float
det_fg_threshold
=
54
[
default
=
0.5
];
// background (non-object) overlap threshold
optional
float
det_bg_threshold
=
55
[
default
=
0.5
];
// Fraction of batch that should be foreground objects
optional
float
det_fg_fraction
=
56
[
default
=
0.25
];
// optional bool OBSOLETE_can_clobber = 57 [default = true];
// Amount of contextual padding to add around a window
// (used only by the window_data_layer)
optional
uint32
det_context_pad
=
58
[
default
=
0
];
// Mode for cropping out a detection window
// warp: cropped window is warped to a fixed size and aspect ratio
// square: the tightest square around the window is cropped
optional
string
det_crop_mode
=
59
[
default
=
"warp"
];
// For ReshapeLayer, one needs to specify the new dimensions.
optional
int32
new_num
=
60
[
default
=
0
];
optional
int32
new_channels
=
61
[
default
=
0
];
optional
int32
new_height
=
62
[
default
=
0
];
optional
int32
new_width
=
63
[
default
=
0
];
// Whether or not ImageLayer should shuffle the list of files at every epoch.
// It will also resize images if new_height or new_width are not zero.
optional
bool
shuffle_images
=
64
[
default
=
false
];
// For ConcatLayer, one needs to specify the dimension for concatenation, and
// the other dimensions must be the same for all the bottom blobs.
// By default it will concatenate blobs along the channels dimension.
optional
uint32
concat_dim
=
65
[
default
=
1
];
optional
HDF5OutputParameter
hdf5_output_param
=
1001
;
}
message
PReLUParameter
{
// Parametric ReLU described in K. He et al, Delving Deep into Rectifiers:
// Surpassing Human-Level Performance on ImageNet Classification, 2015.
// Initial value of a_i. Default is a_i=0.25 for all i.
optional
FillerParameter
filler
=
1
;
// Whether or not slope paramters are shared across channels.
optional
bool
channel_shared
=
2
[
default
=
false
];
}
message
AxpyParameter
{
}
message
UpsampleParameter
{
optional
int32
scale
=
1
[
default
=
1
];
}
message
ROIPoolingParameter
{
// Pad, kernel size, and stride are all given as a single value for equal
// dimensions in height and width or as Y, X pairs.
optional
uint32
pooled_h
=
1
[
default
=
0
];
// The pooled output height
optional
uint32
pooled_w
=
2
[
default
=
0
];
// The pooled output width
// Multiplicative spatial scale factor to translate ROI coords from their
// input scale to the scale used when pooling
optional
float
spatial_scale
=
3
[
default
=
1
];
}
message
ShuffleChannelParameter
{
optional
uint32
group
=
1
[
default
=
1
];
// The number of group
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录