From bc736d9c83f678a36e4b2f57045052c253275892 Mon Sep 17 00:00:00 2001 From: root Date: Mon, 2 Dec 2019 07:19:00 +0000 Subject: [PATCH] onnxruntime update to 1.1.0, before convert, onnxruntime will run model to check the correctness of model --- README.md | 2 +- setup.py | 2 +- x2paddle/convert.py | 8 +- x2paddle/decoder/onnx_backend.py | 1088 -------------------------- x2paddle/decoder/onnx_decoder.py | 45 +- x2paddle/onnx_infer.py | 51 -- x2paddle/op_mapper/onnx_op_mapper.py | 27 +- 7 files changed, 61 insertions(+), 1162 deletions(-) delete mode 100644 x2paddle/decoder/onnx_backend.py delete mode 100644 x2paddle/onnx_infer.py diff --git a/README.md b/README.md index ae24f6b..f4d594d 100644 --- a/README.md +++ b/README.md @@ -15,7 +15,7 @@ paddlepaddle >= 1.6.0 **按需安装以下依赖** tensorflow : tensorflow == 1.14.0 caffe : 无 -onnx : onnx == 1.5.0 onnxruntime == 0.4.0 +onnx : onnx == 1.6.0 onnxruntime == 1.1.0 ## 安装 ### 安装方式一(推荐) diff --git a/setup.py b/setup.py index 0cf68ba..5aa9148 100644 --- a/setup.py +++ b/setup.py @@ -26,6 +26,6 @@ setuptools.setup( entry_points={ 'console_scripts': [ 'x2paddle=x2paddle.convert:main', - 'onnx_infer=x2paddle.onnx_infer:main' + # 'onnx_infer=x2paddle.onnx_infer:main' ] }) diff --git a/x2paddle/convert.py b/x2paddle/convert.py index 711c974..a12a00a 100644 --- a/x2paddle/convert.py +++ b/x2paddle/convert.py @@ -155,18 +155,18 @@ def onnx2paddle(model_path, save_dir, params_merge=False): try: import onnx version = onnx.version.version - if version != '1.5.0': - print("onnx==1.5.0 is required") + if version != '1.6.0': + print("onnx==1.6.0 is required") return except: - print("onnx is not installed, use \"pip install onnx==1.5.0\".") + print("onnx is not installed, use \"pip install onnx==1.6.0\".") return print("Now translating model from onnx to paddle.") from x2paddle.op_mapper.onnx_op_mapper import ONNXOpMapper from x2paddle.decoder.onnx_decoder import ONNXDecoder from x2paddle.optimizer.onnx_optimizer import ONNXOptimizer - + import onnxruntime model = ONNXDecoder(model_path) mapper = ONNXOpMapper(model, save_dir) optimizer = ONNXOptimizer(mapper) diff --git a/x2paddle/decoder/onnx_backend.py b/x2paddle/decoder/onnx_backend.py deleted file mode 100644 index aeebeb9..0000000 --- a/x2paddle/decoder/onnx_backend.py +++ /dev/null @@ -1,1088 +0,0 @@ -# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License" -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# Part of the following code in this file refs to https://github.com/pytorch/pytorch/blob/master/caffe2/python/onnx/backend.py -# PyTorch is BSD-style licensed, as found in the LICENSE file: https://github.com/pytorch/pytorch/blob/master/LICENSE -"""Backend for running ONNX on Caffe2 - -To run this, you will need to have Caffe2 installed as well. -""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -from __future__ import unicode_literals - -import os -import collections -from subprocess import Popen, PIPE -import zipfile -import itertools - -# When onnx is built against a version of protobuf that is older than -# that which is vendored with caffe2, onnx will crash if caffe2's -# vendored protobuf is loaded first. We can work around this by -# importing onnx first, which will cause it to go out and pick up the -# system protobuf. -import onnx.backend - -import caffe2 -from caffe2.python import core, workspace, rnn_cell, gru_cell -from caffe2.python.compatibility import container_abcs -from caffe2.python.model_helper import ModelHelper -from caffe2.proto import caffe2_pb2 -import caffe2.python.utils -import numpy as np -import onnx -from onnx import checker, GraphProto, TensorProto, AttributeProto, ModelProto -import onnx.numpy_helper -import onnx.defs -import onnx.optimizer -import onnx.shape_inference -import onnx.utils -from onnx.backend.base import Backend, Device, DeviceType, namedtupledict - -from caffe2.python.onnx.workspace import Workspace -from caffe2.python.onnx.backend_rep import Caffe2Rep -from caffe2.python.onnx.backend_cpp_rep import Caffe2CppRep - -import caffe2.python._import_c_extension as C - -import warnings - - -def force_unicode(s): - try: - return s.decode('utf-8') - except AttributeError: - return s - - -def get_device_option(device): - m = { - DeviceType.CPU: caffe2_pb2.CPU, - DeviceType.CUDA: workspace.GpuDeviceType - } - return core.DeviceOption(m[device.type], device.device_id) - - -class OnnxAttributes(dict): - """ - This is a more convenient way to work with ONNX/Caffe2 attributes - that is not the protobuf representation. - """ - @staticmethod - def from_onnx(args): - d = OnnxAttributes() - for arg in args: - d[arg.name] = convertAttributeProto(arg) - return d - - def caffe2(self, kmap=lambda k: k): - for k, v in self.items(): - if kmap(k) != '': - yield caffe2.python.utils.MakeArgument(kmap(k), v) - - -# TODO: Move this into ONNX main library -def convertAttributeProto(onnx_arg): - """ - Convert an ONNX AttributeProto into an appropriate Python object - for the type. - - NB: Tensor attribute gets returned as the straight proto. - """ - if onnx_arg.HasField('f'): - return onnx_arg.f - elif onnx_arg.HasField('i'): - return onnx_arg.i - elif onnx_arg.HasField('s'): - return onnx_arg.s - elif onnx_arg.HasField('t'): - return onnx_arg.t # this is a proto! - elif onnx_arg.HasField('g'): - return Caffe2Backend._graph_to_net(onnx_arg.g, - Caffe2Backend._known_opset_version) - elif len(onnx_arg.floats): - return list(onnx_arg.floats) - elif len(onnx_arg.ints): - return list(onnx_arg.ints) - elif len(onnx_arg.strings): - return list(onnx_arg.strings) - elif len(onnx_arg.graphs): - retval = [] - # TODO: this doesn't work with RNN ops - for g in onnx_arg.graphs: - retval.append( - Caffe2Backend._graph_to_net(g, - Caffe2Backend._known_opset_version)) - return retval - else: - raise ValueError("Unsupported ONNX attribute: {}".format(onnx_arg)) - - -# TODO: Move this into ONNX main library -class OnnxNode(object): - """ - Reimplementation of NodeProto from ONNX, but in a form - more convenient to work with from Python. - - We may temporarily edit these nodes to get them into Caffe2 form, - before actually translating into the Caffe2 protobuf, since this - is easier than decomposing everything, and putting it back together - when we're ready. - """ - def __init__(self, node): - self.name = str(node.name) - self.op_type = str(node.op_type) - self.attrs = OnnxAttributes.from_onnx(node.attribute) - self.inputs = list(node.input) - self.outputs = list(node.output) - - -Caffe2Ops = collections.namedtuple('Caffe2Ops', - ['ops', 'init_ops', 'interface_blobs']) - - -class Caffe2Backend(Backend): - - # The greatest version of the ONNX operator set which we are aware of. - # Models whose version is larger than this will cause us to emit a warning - # that we are attempting to translate on a "best effort" basis. - # - # If you increase this, make SURE you cross-reference all BC-breaking - # changes from one version to the next, and any that you did not - # implement, mark as broken in _broken_operators - _known_opset_version = 9 - - # This dictionary will record operators which are KNOWN to be - # broken, so we give a good error message rather than do something - # bogus and then fail. - _broken_operators = { - # 'BrokenOp': version_it_was_broken_in - } - - # Operators that are different between Caffe2 and - # ONNX but only in their name. - # In most cases, this should be empty - as the effort of ONNX is - # to unify the operator definitions. - _renamed_operators = { - 'GlobalMaxPool': 'MaxPool', - 'GlobalAveragePool': 'AveragePool', - 'Pad': 'PadImage', - 'Neg': 'Negative', - 'BatchNormalization': 'SpatialBN', - 'InstanceNormalization': 'InstanceNorm', - 'MatMul': 'BatchMatMul', - 'Upsample': 'ResizeNearest', - 'Identity': 'Copy', - 'InstanceNormalization': 'InstanceNorm', - 'Equal': 'EQ', - 'Less': 'LT', - 'Greater': 'GT', - 'Unsqueeze': 'ExpandDims', - 'Loop': 'ONNXWhile', - 'Tile': 'NumpyTile', - 'RandomNormal': 'GaussianFill', - 'RandomUniform': 'UniformFill', - } - - _global_renamed_attrs = {'kernel_shape': 'kernels'} - _per_op_renamed_attrs = { - 'Squeeze': { - 'axes': 'dims' - }, - 'Unsqueeze': { - 'axes': 'dims' - }, - 'Transpose': { - 'perm': 'axes' - }, - 'Upsample': { - 'mode': '', - 'scales': '' - }, - 'ConvTranspose': { - 'output_padding': 'adjs' - }, - 'Selu': { - 'gamma': 'scale' - }, - 'If': { - 'then_branch': 'then_net', - 'else_branch': 'else_net' - }, - 'RandomUniform': { - 'low': 'min', - 'high': 'max' - } - } - - # operators whose behavior is different beyond renaming - # the value is an attribute of this class that is a - # function from ToffeIR node_def to caffe2 op_def - _special_operators = { - 'LSTM': '_create_rnn_variant', - 'GRU': '_create_rnn_variant', - 'RNN': '_create_rnn_variant', - 'Loop': '_create_loop', - 'If': '_create_if', - 'Upsample': '_create_upsample', - 'RandomNormal': '_create_gaussian_fill' - } - - # Dummy name generator - _dummy_name = C.DummyName() - - @classmethod - def dummy_name(cls): - return cls._dummy_name.new_dummy_name() - - # NB: By default, you will use the LATEST definition of the operator, - # so this interface MAY make BC-breaking changes. Specify an - # opset_version if you don't want this to version. - @classmethod - def run_node(cls, - node, - inputs, - device='CPU', - opset_version=_known_opset_version, - outputs_info=None): - super(Caffe2Backend, cls).run_node(node, - inputs, - device=device, - outputs_info=outputs_info, - opset_version=opset_version) - - value_infos = [] - device_option = get_device_option(Device(device)) - ws = Workspace() - with core.DeviceScope(device_option): # temporary! - if isinstance(inputs, dict): - for key, value in inputs.items(): - ws.FeedBlob(key, value) - value_infos.append( - onnx.helper.make_tensor_value_info( - name=key, - elem_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[ - value.dtype], - shape=value.shape).SerializeToString()) - else: - assert len(node.input) == len( - inputs), "{}: expected {} but got {}".format( - node.op_type, len(node.input), len(inputs)) - for key, value in zip(node.input, inputs): - ws.FeedBlob(key, value) - value_infos.append( - onnx.helper.make_tensor_value_info( - name=key, - elem_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[ - value.dtype], - shape=value.shape).SerializeToString()) - - ops = [] - cbackend = C.Caffe2Backend(cls._dummy_name) - ops_str = cbackend.convert_node(node.SerializeToString(), - value_infos, opset_version) - for s in ops_str[0] + ops_str[1]: - op = caffe2_pb2.OperatorDef() - op.ParseFromString(s) - op.device_option.CopyFrom(device_option) - ops.append(op) - ws.RunOperatorsOnce(ops) - output_values = [ws.FetchBlob(name) for name in node.output] - return namedtupledict('Outputs', node.output)(*output_values) - - @classmethod - def _create_tensor_filling_op(cls, onnx_tensor, name=None): - """ - Given an Onnx TensorProto, translate it into a Caffe2 operator - which produces the given tensor filling op. - """ - assert name or onnx_tensor.name - name = name or onnx_tensor.name - - c2_op = caffe2_pb2.OperatorDef() - - c2_values = c2_op.arg.add() - c2_values.name = "values" - - def tensor2list(onnx_tensor): - # Use the onnx.numpy_helper because the data may be raw - return onnx.numpy_helper.to_array(onnx_tensor).flatten().tolist() - - if onnx_tensor.data_type in [TensorProto.FLOAT]: - c2_op.type = 'GivenTensorFill' - c2_values.floats.extend(tensor2list(onnx_tensor)) - elif onnx_tensor.data_type in [TensorProto.DOUBLE]: - c2_op.type = 'GivenTensorDoubleFill' - c2_values.floats.extend(tensor2list(onnx_tensor)) - elif onnx_tensor.data_type in [TensorProto.INT64, TensorProto.UINT32]: - c2_op.type = 'GivenTensorInt64Fill' - c2_values.ints.extend(tensor2list(onnx_tensor)) - elif onnx_tensor.data_type in [ - TensorProto.UINT8, TensorProto.INT8, TensorProto.UINT16, - TensorProto.INT16, TensorProto.INT32 - ]: - c2_op.type = 'GivenTensorIntFill' - c2_values.ints.extend(tensor2list(onnx_tensor)) - elif onnx_tensor.data_type == TensorProto.BOOL: - c2_op.type = 'GivenTensorBoolFill' - c2_values.ints.extend(tensor2list(onnx_tensor)) - elif onnx_tensor.data_type == TensorProto.STRING: - c2_op.type = 'GivenTensorStringFill' - c2_values.strings.extend(onnx_tensor.string_data) - else: - raise RuntimeError("unrecognized tensor type {}".format( - onnx_tensor.data_type)) - - c2_shape = c2_op.arg.add() - c2_shape.name = "shape" - c2_shape.ints.extend(onnx_tensor.dims) - - c2_op.output.append(name) - - return c2_op - - @classmethod - def _rnn_reform_weights(cls, reforms, name, hidden_size, init_net, gates, - reorder_indices): - for name_from, name_to, do_concat, extra_dims in reforms: - gate_blobs = [ - '%s/%s_%s' % (name, prefix, name_to) for prefix in gates - ] - for i, x in enumerate(gate_blobs): - dim0 = i * hidden_size, (i + 1) * hidden_size - starts, ends = zip(dim0, *extra_dims) - init_net.Slice(name_from, x, starts=starts, ends=ends) - if do_concat: - reordered_gate_blobs = [gate_blobs[i] for i in reorder_indices] - init_net.Concat(reordered_gate_blobs, - ['%s/%s' % (name, name_to), - cls.dummy_name()], - axis=0) - - @classmethod - def _make_rnn_direction(cls, input_blob, B, W, R, initial_states_and_names, - sequence_lens, pred_mh, init_net, input_size, - hidden_size, num_gates, direction_offset, Bi, Br, - W_, R_, reform, make_cell, keep_outputs): - name = cls.dummy_name() - - # input and recurrence biases are squashed together in onnx - # but not in caffe2 - gates_hidden_size = num_gates * hidden_size - bias_offset = 2 * direction_offset * gates_hidden_size - weight_offset = direction_offset * gates_hidden_size - Bi = init_net.Slice(B, - name + Bi, - starts=[bias_offset + 0 * gates_hidden_size], - ends=[bias_offset + 1 * gates_hidden_size]) - Br = init_net.Slice(B, - name + Br, - starts=[bias_offset + 1 * gates_hidden_size], - ends=[bias_offset + 2 * gates_hidden_size]) - W_ = init_net.Slice(W, - name + W_, - starts=[weight_offset + 0 * gates_hidden_size, 0], - ends=[weight_offset + 1 * gates_hidden_size, -1]) - R_ = init_net.Slice(R, - name + R_, - starts=[weight_offset + 0 * gates_hidden_size, 0], - ends=[weight_offset + 1 * gates_hidden_size, -1]) - - initial_states_sliced = [] - for initial_state, name_suffix in initial_states_and_names: - initial_states_sliced.append( - pred_mh.net.Slice(initial_state, - name + name_suffix, - starts=[direction_offset + 0, 0, 0], - ends=[direction_offset + 1, -1, -1])) - - if direction_offset == 1: - if sequence_lens is not None: - seq_lens_for_reverse = sequence_lens - else: - input_shape = pred_mh.net.Shape(input_blob, - name + '/input_shape') - batch_size = pred_mh.net.Slice(input_shape, - name + '/batch_size_slice', - starts=[1], - ends=[2]) - seq_len = pred_mh.net.Slice(input_shape, - name + '/seq_len_slice', - starts=[0], - ends=[1]) - dummy_sequence_lens = pred_mh.net.Tile([seq_len, batch_size], - name + - '/dummy_sequence_lens', - axis=0) - pred_mh.net.Reshape( - dummy_sequence_lens, - [dummy_sequence_lens, cls.dummy_name()], - shape=[-1]) - seq_lens_for_reverse = pred_mh.net.Cast(dummy_sequence_lens, - name + - '/seq_lens_for_reverse', - to=core.DataType.INT32) - reform(Bi, Br, W_, R_, name, hidden_size, init_net) - - if direction_offset == 1: - input = pred_mh.net.ReversePackedSegs( - [input_blob, seq_lens_for_reverse], name + "/input-reversed") - else: - input = input_blob - - outputs = keep_outputs( - list( - make_cell( - pred_mh, - input, - sequence_lens, - initial_states_sliced, - input_size, - hidden_size, - name, - drop_states=False, - forward_only=True, - ))) - - if direction_offset == 1: - outputs[0] = pred_mh.net.ReversePackedSegs( - [outputs[0], seq_lens_for_reverse], name + "/output-reversed") - - return outputs - - @classmethod - def _create_rnn_variant(cls, init_model, pred_model, n, opset_version): - assert init_model is not None, "cannot convert RNNs without access to the full model" - assert pred_model is not None, "cannot convert RNNs without access to the full model" - - attrs = dict(n.attrs) # make a copy, which is safe to mutate - hidden_size = attrs.pop('hidden_size') - direction = force_unicode(attrs.pop('direction', 'forward')) - - if n.op_type == 'RNN': - activation = force_unicode( - attrs.pop('activations', ('tanh', ))[0].lower()) - elif n.op_type == 'GRU': - linear_before_reset = attrs.pop('linear_before_reset', 0) - - assert not attrs, "unsupported RNN attributes: " + str(attrs.keys()) - assert direction in ['forward', 'bidirectional' - ], "unsupported backwards RNN/GRU/LSTM" - - if n.op_type in ['RNN', 'GRU']: - input_blob, W, R, B, sequence_lens, initial_h = n.inputs - elif n.op_type == 'LSTM': - input_blob, W, R, B, sequence_lens, initial_h, initial_c = n.inputs - - if sequence_lens == "": - sequence_lens = None - - for x in itertools.chain(init_model.graph.input, - init_model.graph.value_info, - pred_model.graph.input, - pred_model.graph.value_info): - if x.name == W: - input_size = x.type.tensor_type.shape.dim[2].dim_value - break - else: - raise RuntimeError( - "best-effort shape inference for RNN/GRU/LSTM failed") - - pred_mh = ModelHelper() - init_net = core.Net("init-net") - - init_net.Reshape(W, [W, cls.dummy_name()], shape=[1, -1, 0]) - init_net.Squeeze(W, W, dims=[0]) - init_net.Reshape(R, [R, cls.dummy_name()], shape=[1, -1, 0]) - init_net.Squeeze(R, R, dims=[0]) - init_net.Reshape(B, [B, cls.dummy_name()], shape=[1, -1]) - init_net.Squeeze(B, B, dims=[0]) - - if n.op_type == 'RNN': - - def reform(*args): - pass - - def make_cell(*args, **kwargs): - return rnn_cell.BasicRNN(*args, activation=activation, **kwargs) - - def make_rnn(direction_offset): - return cls._make_rnn_direction( - input_blob, B, W, R, [(initial_h, '/initial_h')], - sequence_lens, pred_mh, init_net, input_size, hidden_size, - 1, direction_offset, "/i2h_b", "/gates_t_b", "/i2h_w", - "/gates_t_w", reform, make_cell, lambda x: x) - - elif n.op_type == 'GRU': - - def reform(Bi, Br, W_, R_, name, hidden_size, init_net): - # caffe2 has a different order from onnx. We need to rearrange - # z r h -> r z h - reforms = ((W_, 'i2h_w', True, [(0, -1)]), (R_, 'gate_t_w', - False, [(0, -1)]), - (Bi, 'i2h_b', True, []), (Br, 'gate_t_b', False, [])) - cls._rnn_reform_weights(reforms, name, hidden_size, init_net, - ['update', 'reset', 'output'], - [1, 0, 2]) - - def make_cell(*args, **kwargs): - return gru_cell.GRU(*args, - linear_before_reset=linear_before_reset, - **kwargs) - - def make_rnn(direction_offset): - return cls._make_rnn_direction( - input_blob, B, W, R, [(initial_h, '/initial_h')], - sequence_lens, pred_mh, init_net, input_size, hidden_size, - 3, direction_offset, "_bias_i2h", "_bias_gates", - "/i2h_w_pre", "/gates_t_w_pre", reform, make_cell, - lambda x: x) - - elif n.op_type == 'LSTM': - - def reform(Bi, Br, W_, R_, name, hidden_size, init_net): - # caffe2 has a different order from onnx. We need to rearrange - # i o f c -> i f o c - reforms = ((W_, 'i2h_w', True, [(0, -1)]), (R_, 'gates_t_w', - True, [(0, -1)]), - (Bi, 'i2h_b', True, []), (Br, 'gates_t_b', True, [])) - cls._rnn_reform_weights(reforms, name, hidden_size, init_net, - ['input', 'output', 'forget', 'cell'], - [0, 2, 1, 3]) - - def make_cell(*args, **kwargs): - return rnn_cell.LSTM(*args, **kwargs) - - def make_rnn(direction_offset): - return cls._make_rnn_direction( - input_blob, B, W, R, [(initial_h, '/initial_h'), - (initial_c, '/initial_c')], - sequence_lens, pred_mh, init_net, input_size, hidden_size, - 4, direction_offset, "/i2h_b", "/gates_t_b", "/i2h_w", - "/gates_t_w", reform, make_cell, - lambda x: [x[0], x[1], x[3]]) - - if direction == 'forward': - outputs = make_rnn(0) - - # in the forward case, storage is shared between the - # last outputs. We need to decouple them so that the - # VariableLengthSequencePadding only mutates - # n.outputs[0] - for i in range(1, len(outputs)): - pred_mh.net.Copy(outputs[i], n.outputs[i]) - - if sequence_lens is not None: - pred_mh.net.VariableLengthSequencePadding( - [outputs[0], sequence_lens], [outputs[0]]) - pred_mh.net.ExpandDims([outputs[0]], [n.outputs[0]], dims=[1]) - elif direction == 'bidirectional': - outputs_f = make_rnn(0) - outputs_b = make_rnn(1) - - concatted_output, _ = pred_mh.net.Concat( - [outputs_f[0], outputs_b[0]], - [cls.dummy_name(), cls.dummy_name()], - axis=2) - if sequence_lens is not None: - pred_mh.net.VariableLengthSequencePadding( - [concatted_output, sequence_lens], [concatted_output]) - reshaped_output, _ = pred_mh.net.Reshape( - concatted_output, - [cls.dummy_name(), cls.dummy_name()], - shape=[0, 0, -1, 2]) - pred_mh.net.Transpose(reshaped_output, - n.outputs[0], - axes=[0, 2, 1, 3]) - for i in range(1, len(n.outputs)): - pred_mh.net.Concat( - [outputs_f[i], outputs_b[i]], - [n.outputs[i], cls.dummy_name()], - axis=0) - - # We want to decide whether to put all of our weight-reshaping - # operators in the init net or the predict net. We can put - # them in the init net iff the inputs to those operators are - # already available, either as graph initializers, or as the - # output of other operators in the init net. The latter case - # occurs, for example, when exporting from pytorch to onnx. - # In most production use, we expect has_initializers to be - # true. - initializers = {i.name for i in init_model.graph.initializer} - outputs = { - output - for node in init_model.graph.node for output in node.output - } - has_initializers = all(x in initializers or x in outputs - for x in (W, R, B)) - - pred_ops = [] - init_ops = [] - (init_ops if has_initializers else pred_ops).extend(init_net.Proto().op) - pred_ops.extend(pred_mh.Proto().op) - - return Caffe2Ops(pred_ops, init_ops, - list(pred_mh.Proto().external_input)) - - @classmethod - def _create_control_op(cls, init_model, pred_model, n, opset_version): - control_inputs = [] - if '__control_inputs' in n.attrs: - control_inputs.extend(n.attrs['__control_inputs']) - node = cls._common_onnx_node_to_caffe2_op(init_model, pred_model, n, - opset_version) - node.control_input.extend(control_inputs) - return Caffe2Ops([node], [], []) - - @classmethod - def _remove_ssa(cls, net, remap_dict): - for op in net.op: - for i, name in enumerate(op.output): - if name in remap_dict: - op.output[i] = remap_dict[name] - for i, out in enumerate(net.external_output): - if out in remap_dict: - net.external_output[i] = remap_dict[out] - - @classmethod - def _create_if(cls, init_model, pred_model, n, opset_version): - ops = cls._create_control_op(init_model, pred_model, n, opset_version) - assert ops[0][0].type == 'If' - if_op = ops[0][0] - then_net = else_net = None - control_inputs = [] - for arg in if_op.arg: - if arg.name == 'then_net': - then_net = arg.n - if arg.name == 'else_net': - else_net = arg.n - if arg.name == '__control_inputs': - control_inputs = arg.strings - - assert then_net and else_net - then_net_outs = then_net.external_output - else_net_outs = else_net.external_output - op_outputs = if_op.output - assert len(then_net_outs) == len(else_net_outs) - assert len(else_net_outs) == len(op_outputs) - - for arg in if_op.arg: - if arg.name == 'then_net': - arg.n.external_input.extend(control_inputs) - if arg.name == 'else_net': - arg.n.external_input.extend(control_inputs) - - return ops - - @classmethod - def _create_loop(cls, init_model, pred_model, n, opset_version): - ops = cls._create_control_op(init_model, pred_model, n, opset_version) - assert ops[0][0].type == 'ONNXWhile' - while_op = ops[0][0] - while_op.arg.extend( - [caffe2.python.utils.MakeArgument('has_trip_count', True)]) - while_op.arg.extend( - [caffe2.python.utils.MakeArgument('has_cond', True)]) - while_op.arg.extend( - [caffe2.python.utils.MakeArgument('disable_scopes', True)]) - control_inputs = [] - for arg in while_op.arg: - if arg.name == '__control_inputs': - control_inputs = arg.strings - num_loop_carried_deps = 0 - for arg in while_op.arg: - if arg.name == 'body': - num_loop_carried_deps = len(arg.n.external_input) - 2 - arg.n.external_input.extend(control_inputs) - while_op.arg.extend([ - caffe2.python.utils.MakeArgument('num_loop_carried_deps', - num_loop_carried_deps) - ]) - - return ops - - @classmethod - def _substitute_raw_value(cls, tp, raw_values_dict): - if tp.HasField('raw_data') and tp.raw_data == bytes(b'__EXTERNAL'): - if tp.name not in raw_values_dict: - raise RuntimeError( - 'TensorProto for value {} referenced raw data but it was not found!' - .format(tp.name)) - else: - tp.raw_data = raw_values_dict[tp.name] - - @classmethod - def _visit_and_substitute_raw_values(cls, nodes, raw_values_dict): - for node in nodes: - for attr in node.attribute: - if attr.HasField('t'): - cls._substitute_raw_value(attr.t, raw_values_dict) - for t in attr.tensors: - cls._substitute_raw_value(t, raw_values_dict) - if attr.HasField('g'): - cls._visit_and_substitute_raw_values( - attr.g.node, raw_values_dict) - for g in attr.graphs: - cls._visit_and_substitute_raw_values( - g.node, raw_values_dict) - - @classmethod - def _external_value_resolution_pass(cls, model, raw_values_dict): - for init in model.graph.initializer: - cls._substitute_raw_value(init, raw_values_dict) - - cls._visit_and_substitute_raw_values(model.graph.node, raw_values_dict) - - @classmethod - def _direct_initialize_parameters(cls, initializer, ws, device_option): - for tp in initializer: - ws.FeedBlob(tp.name, onnx.numpy_helper.to_array(tp), device_option) - - @classmethod - def _direct_initialize_inputs(cls, inputs, initialized, ws, device_option): - for value_info in inputs: - if value_info.name in initialized: - continue - shape = list(d.dim_value - for d in value_info.type.tensor_type.shape.dim) - ws.FeedBlob( - value_info.name, - np.ones(shape, - dtype=onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[ - value_info.type.tensor_type.elem_type]), - device_option) - - @staticmethod - def optimize_onnx(input, init=False, predict=False): - passes = [ - 'fuse_consecutive_transposes', 'eliminate_nop_transpose', - 'fuse_transpose_into_gemm', 'lift_lexical_references' - ] - if init: - passes.append('split_init') - if predict: - passes.append('split_predict') - out = onnx.optimizer.optimize(input, passes) - return out - - @classmethod - def prepare_zip_archive(cls, file, device='CPU', **kwargs): - with zipfile.ZipFile(file, mode='r') as z: - with z.open('__MODEL_PROTO', 'r') as f: - model = onnx.load(f) - blob_names = set(z.namelist()) - set('__MODEL_PROTO') - # TODO: make this more efficient - raw_values_dict = {} - for name in blob_names: - with z.open(name, 'r') as blob_file: - raw_values_dict[name] = blob_file.read() - - return cls.prepare(model, - device, - raw_values_dict=raw_values_dict, - **kwargs) - - @classmethod - def prepare(cls, model, device='CPU', raw_values_dict=None, **kwargs): - ''' - For Onnx Caffe2Backend, we require that init_graph don't initialize the actual input of the predict_graph, - - for example, if "img" is the input blob for the predict_net, we require that in init_graph and in - initializer of the predict_graph, "img" is not initalized. We don't have a check for this, since - there is no way we can know which blob is the input of the predict_graph. - ''' - if not kwargs.pop('no_check_UNSAFE', False): - super(Caffe2Backend, cls).prepare(model, device, **kwargs) - opset_version = None - for imp in model.opset_import: - if not imp.HasField("domain") or imp.domain == "": - opset_version = imp.version - if imp.version > cls._known_opset_version: - warnings.warn( - "This version of onnx-caffe2 targets ONNX operator set version {}, but the model we are trying to import uses version {}. We will try to import it anyway, but if the model uses operators which had BC-breaking changes in the intervening versions, import will fail." - .format(cls._known_opset_version, imp.version)) - else: - warnings.warn("Unrecognized operator set {}".format(imp.domain)) - if opset_version is None: - if model.ir_version >= 0x00000003: - raise RuntimeError( - "Model with IR version >= 3 did not specify ONNX operator set version (onnx-caffe2 requires it)" - ) - else: - opset_version = 1 - - ws = Workspace() - device_option = get_device_option(Device(device)) - - init_net, predict_net = cls._onnx_model_to_caffe2_net( - model, device, opset_version, False) - - if raw_values_dict: - cls._external_value_resolution_pass(model, raw_values_dict) - - # Directly load initializer data into blobs in workspace - cls._direct_initialize_parameters( - model.graph.initializer, - ws, - device_option, - ) - - initialized = {init.name for init in model.graph.initializer} - - cls._direct_initialize_inputs( - model.graph.input, - initialized, - ws, - device_option, - ) - - uninitialized = [ - value_info.name for value_info in model.graph.input - if value_info.name not in initialized - ] - - retval = Caffe2Rep(init_net, predict_net, ws, uninitialized) - return retval - - @classmethod - # TODO: This method needs a refactor for clarity - def _onnx_node_to_caffe2_op(cls, init_model, pred_model, node_def, - opset_version): - cbackend = C.Caffe2Backend(cls._dummy_name) - if cbackend.support_onnx_import(node_def.op_type): - - # extract value infos from pred model (value infos of - # node's inputs that are in init model should be all - # available in pred model) - value_infos = [] - for name in node_def.input: - if pred_model is not None: - for vi in itertools.chain(pred_model.graph.input, - pred_model.graph.output, - pred_model.graph.value_info): - if vi.name == name: - value_infos.append(vi.SerializeToString()) - - op_strs = cbackend.convert_node(node_def.SerializeToString(), - value_infos, opset_version) - init_ops = [] - for s in op_strs[0]: - op = caffe2_pb2.OperatorDef() - op.ParseFromString(s) - init_ops.append(op) - ops = [] - for s in op_strs[1]: - op = caffe2_pb2.OperatorDef() - op.ParseFromString(s) - ops.append(op) - return Caffe2Ops(ops, init_ops, []) - - if node_def.op_type in cls._special_operators: - translator = getattr(cls, cls._special_operators[node_def.op_type]) - else: - translator = cls._common_onnx_node_to_caffe2_op - ops = translator(init_model, pred_model, OnnxNode(node_def), - opset_version) - if isinstance(ops, Caffe2Ops): - return ops - if not isinstance(ops, container_abcs.Iterable): - ops = [ops] - return Caffe2Ops(ops, [], []) - - _broadcast_operators = { - 'Add', - 'Sub', - } - - @classmethod - def _common_onnx_node_to_caffe2_op(cls, init_model, pred_model, onnx_node, - opset_version): - """ - This translator performs the basic translation of ONNX nodes into - Caffe2 operators. Besides doing a straightforward marshalling from - one format to another, it also does these extra things: - - - Renames operators based on '_renamed_operators' - - Renames attributes based on '_global_renamed_attrs' and - '_per_op_renamed_attrs' - - If you're writing a custom translator, consider calling this first, - and then fixing things up further. - """ - c2_op = caffe2_pb2.OperatorDef() - - c2_op.input.extend(onnx_node.inputs) - c2_op.output.extend(onnx_node.outputs) - c2_op.name = onnx_node.name - - onnx_op_type = onnx_node.op_type - broken_version = cls._broken_operators.get(onnx_op_type, float('Inf')) - if broken_version <= opset_version: - raise ValueError( - "Don't know how to translate op {} in ONNX operator set v{} (I only support prior to v{})" - .format(onnx_op_type, opset_version, broken_version)) - c2_op.type = cls._renamed_operators.get(onnx_op_type, onnx_op_type) - if not core.IsOperator(c2_op.type): - raise ValueError( - "Don't know how to translate op {}".format(onnx_op_type)) - - def kmap(k): - if (onnx_op_type in cls._per_op_renamed_attrs - and k in cls._per_op_renamed_attrs[onnx_op_type]): - return cls._per_op_renamed_attrs[onnx_op_type][k] - if k in cls._global_renamed_attrs: - return cls._global_renamed_attrs[k] - return k - - c2_op.arg.extend(onnx_node.attrs.caffe2(kmap=kmap)) - - if opset_version < 7: - # onnx opset 7 and newest caffe2 have adopted full onnx broadcast semantics - # so we don't need this hack anymore - if c2_op.type in cls._broadcast_operators: - already_broadcast = False - for arg in c2_op.arg: - if arg.name == 'broadcast': - already_broadcast = True - if not already_broadcast: - c2_op.arg.extend( - [caffe2.python.utils.MakeArgument('broadcast', 1)]) - - return c2_op - - @staticmethod - def _all_names_in_graph(graph): - if graph is None: - return set() - - names = set() - names.update(value_info.name for value_info in graph.input) - names.update(value_info.name for value_info in graph.output) - for node in graph.node: - names.update(node.input) - names.update(node.output) - return names - - @classmethod - def _graph_to_net(cls, onnx_graph, opset_version): - net = caffe2_pb2.NetDef() - for node in onnx_graph.node: - try: - c2ops = cls._onnx_node_to_caffe2_op(None, None, node, - opset_version) - except Exception as e: - print('ONNX FATAL:', e) - continue - net.op.extend(c2ops.init_ops) - net.op.extend(c2ops.ops) - net.external_input.extend(c2ops.interface_blobs) - net.external_output.extend(value_info.name - for value_info in onnx_graph.output) - net.external_input.extend(value_info.name - for value_info in onnx_graph.input) - return net - - @classmethod - def _onnx_model_to_caffe2_net(cls, onnx_model, device, opset_version, - include_initializers): - device_option = get_device_option(Device(device)) - - # init_model = cls.optimize_onnx(onnx_model, init=True) - # pred_model = cls.optimize_onnx(onnx_model, predict=True) - - init_model = onnx_model - pred_model = onnx_model - init_net = caffe2_pb2.NetDef() - pred_net = caffe2_pb2.NetDef() - - init_net.name = onnx_model.graph.name + '_init' - pred_net.name = onnx_model.graph.name + '_predict' - - if include_initializers: - init_net.op.extend( - cls._create_tensor_filling_op(tp) - for tp in onnx_model.graph.initializer) - - cls._dummy_name.reset( - cls._all_names_in_graph(init_model.graph) - | cls._all_names_in_graph(pred_model.graph)) - - success = True - for net, model in ((init_net, init_model), (pred_net, pred_model)): - net.device_option.CopyFrom(device_option) - for node in model.graph.node: - try: - c2ops = cls._onnx_node_to_caffe2_op(init_model, pred_model, - node, opset_version) - except Exception as e: - success = False - print('ONNX FATAL:', e) - continue - init_net.op.extend(c2ops.init_ops) - net.op.extend(c2ops.ops) - net.external_input.extend(c2ops.interface_blobs) - net.external_output.extend(value_info.name - for value_info in model.graph.output) - net.external_input.extend(value_info.name - for value_info in model.graph.input) - - if not success: - raise RuntimeError('ONNX conversion failed') - - return init_net, pred_net - - # wrapper for backwards compatability - @classmethod - def onnx_graph_to_caffe2_net(cls, - model, - device="CPU", - opset_version=_known_opset_version): - return cls._onnx_model_to_caffe2_net(model, - device=device, - opset_version=opset_version, - include_initializers=True) - - @classmethod - def supports_device(cls, device_str): - device = Device(device_str) - if device.type == DeviceType.CPU: - return True - elif core.IsGPUDeviceType(device.type): - return workspace.has_gpu_support - return False - - @classmethod - def is_compatible(cls, model, device='CPU', **kwargs): - if hasattr(super(Caffe2Backend, cls), 'is_compatible') \ - and callable(super(Caffe2Backend, cls).is_compatible): - if not super(Caffe2Backend, cls).is_compatible( - model, device, **kwargs): - return False - # TODO: should have an unspported list of operators, be optimistic for now - return True - - -prepare = Caffe2Backend.prepare - -prepare_zip_archive = Caffe2Backend.prepare_zip_archive - -run_node = Caffe2Backend.run_node - -run_model = Caffe2Backend.run_model - -supports_device = Caffe2Backend.supports_device # noqa - -is_compatible = Caffe2Backend.is_compatible diff --git a/x2paddle/decoder/onnx_decoder.py b/x2paddle/decoder/onnx_decoder.py index acd6145..b916085 100644 --- a/x2paddle/decoder/onnx_decoder.py +++ b/x2paddle/decoder/onnx_decoder.py @@ -316,12 +316,14 @@ class ONNXDecoder(object): model.ir_version, model.opset_import[0].version)) if model.opset_import[0].version < 9: _logger.warning( - 'Now, onnx2paddle main support convert onnx model opset_verison == 9,' + 'Now, onnx2paddle support convert onnx model opset_verison == 9,' 'opset_verison of your onnx model is %d < 9,' - 'some operator may cannot convert.', + 'some operator maybe unsuccessful in convertion.', model.opset_import[0].version) check_model(model) + self.check_model_running_state(onnx_model) + model = onnx.shape_inference.infer_shapes(model) model = self.optimize_model_skip_op_for_inference(model) model = self.optimize_model_strip_initializer(model) @@ -471,7 +473,44 @@ class ONNXDecoder(object): raise ValueError('name should not be empty') for s in ' .*?\\/-:': name = name.replace(s, '_') - return '_' + name + return 'x2paddle_' + name + + def check_model_running_state(self, model_path): + try: + import onnxruntime as rt + version = rt.__version__ + if version != '1.0.0': + print("onnxruntime==1.0.0 is required") + return + except: + raise Exception( + "onnxruntime is not installed, use \"pip install onnxruntime==1.0.0\"." + ) + + model = onnx.load(model_path) + model = onnx.shape_inference.infer_shapes(model) + if len(model.graph.value_info) < len(model.graph.node) - 1: + print( + "shape inference for some operators failed, those operators will be assignd node.out_shape==None, refer to https://github.com/onnx/onnx/blob/master/docs/ShapeInference.md" + ) + try: + datatype_map = { + 'tensor(int64)': 'int', + 'tensor(float)': 'float32', + 'tensor(int32)': 'int32' + } + input_dict = {} + sess = rt.InferenceSession(model_path) + for ipt in sess.get_inputs(): + datatype = datatype_map[ipt.type] + input_dict[ipt.name] = np.random.random( + ipt.shape).astype(datatype) + + res = sess.run(None, input_feed=input_dict) + except: + raise Exception( + "onnxruntime inference onnx model failed, Please confirm the correctness of onnx model by onnxruntime, if onnx model is correct, please submit issue in github." + ) def standardize_variable_name(self, graph): """ diff --git a/x2paddle/onnx_infer.py b/x2paddle/onnx_infer.py deleted file mode 100644 index a034068..0000000 --- a/x2paddle/onnx_infer.py +++ /dev/null @@ -1,51 +0,0 @@ -import os -import sys -import numpy as np -import onnx -import json -import argparse -from six import text_type as _text_type - - -def arg_parser(): - parser = argparse.ArgumentParser() - parser.add_argument("--save_dir", - "-s", - type=_text_type, - default=None, - help="define save_dir") - return parser - - -def main(): - try: - import onnxruntime as rt - version = rt.__version__ - if version != '0.4.0': - print("onnxruntime==0.4.0 is required") - return - except: - print( - "onnxruntime is not installed, use \"pip install onnxruntime==0.4.0\"." - ) - return - parser = arg_parser() - args = parser.parse_args() - - save_dir = args.save_dir - model_dir = os.path.join(save_dir, 'onnx_model_infer.onnx') - - model = onnx.load(model_dir) - sess = rt.InferenceSession(model_dir) - - inputs_dict = {} - for ipt in sess.get_inputs(): - data_dir = os.path.join(save_dir, ipt.name + '.npy') - inputs_dict[ipt.name] = np.load(data_dir, allow_pickle=True) - res = sess.run(None, input_feed=inputs_dict) - for idx, value_info in enumerate(model.graph.output): - np.save(os.path.join(save_dir, value_info.name), res[idx]) - - -if __name__ == "__main__": - main() diff --git a/x2paddle/op_mapper/onnx_op_mapper.py b/x2paddle/op_mapper/onnx_op_mapper.py index cbb1a7f..750be19 100644 --- a/x2paddle/op_mapper/onnx_op_mapper.py +++ b/x2paddle/op_mapper/onnx_op_mapper.py @@ -32,7 +32,7 @@ import math import os import shutil from functools import reduce - +import onnxruntime as rt _logger = _logging.getLogger(__name__) @@ -71,6 +71,7 @@ class ONNXOpMapper(OpMapper): self.used_custom_layers = dict() self.is_inference = False self.tmp_data_dir = os.path.join(save_dir, 'tmp_data') + self.tmp_outputs_dict = {} self.get_output_shapes() if not self.op_checker(): @@ -119,7 +120,7 @@ class ONNXOpMapper(OpMapper): def get_results_of_inference(self, model, value_infos, data_nodes): if not os.path.exists(self.tmp_data_dir): os.makedirs(self.tmp_data_dir) - + inputs_dict = {} for data_node in data_nodes: value_info = value_infos[data_node] shape = value_info['shape'] @@ -129,34 +130,32 @@ class ONNXOpMapper(OpMapper): if dim_shape == 0 and i != 0: assert 'shape of input is not assigned' ipt = np.random.random(shape).astype(value_info['dtype']) - np.save(os.path.join(self.tmp_data_dir, data_node), ipt) + inputs_dict[data_node] = ipt model = onnx.shape_inference.infer_shapes(model) outputs = [] + for value_info in model.graph.value_info: - outputs.append(value_info) + outputs.append(value_info.name) model.graph.ClearField('output') - model.graph.output.MergeFrom(outputs) + model.graph.output.MergeFrom(model.graph.value_info) onnx.save(model, os.path.join(self.tmp_data_dir, 'onnx_model_infer.onnx')) + sess = rt.InferenceSession( + os.path.join(self.tmp_data_dir, 'onnx_model_infer.onnx')) + res = sess.run(None, input_feed=inputs_dict) + self.tmp_outputs_dict = dict(zip(outputs, res)) - is_success = os.system('onnx_infer --save_dir=' + self.tmp_data_dir) - if is_success != 0: - raise Exception("onnxruntime inference onnx model failed, Please \ - confirm the correctness of onnx model by onnxruntime, \ - if onnx model is valid, you can submit issue in github." - ) return def get_dynamic_shape(self, layer): """ get dynamic shape from infer_result """ - path = os.path.join(self.tmp_data_dir, layer + '.npy') - if not os.path.exists(path): + if layer not in self.tmp_outputs_dict: return [None, None, None] - output = np.load(path) + output = self.tmp_outputs_dict[layer] return output.tolist(), output.dtype, output.shape def get_output_shapes(self): -- GitLab