提交 b616b2f6 编写于 作者: J jiangjiajun

add ocr support

上级 2b30df83
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
import warnings
from onnx import helper, onnx_pb
def multiclass_nms(op, block):
"""
Convert the paddle multiclass_nms to onnx op.
This op is get the select boxes from origin boxes.
"""
inputs = dict()
outputs = dict()
attrs = dict()
for name in op.input_names:
inputs[name] = op.input(name)
for name in op.output_names:
outputs[name] = op.output(name)
for name in op.attr_names:
attrs[name] = op.attr(name)
result_name = outputs['Out'][0]
background = attrs['background_label']
normalized = attrs['normalized']
if normalized == False:
warnings.warn(
'The parameter normalized of multiclass_nms OP of Paddle is False, which has diff with ONNX. \
Please set normalized=True in multiclass_nms of Paddle'
)
#convert the paddle attribute to onnx tensor
name_score_threshold = [outputs['Out'][0] + "@score_threshold"]
name_iou_threshold = [outputs['Out'][0] + "@iou_threshold"]
name_keep_top_k = [outputs['Out'][0] + '@keep_top_k']
name_keep_top_k_2D = [outputs['Out'][0] + '@keep_top_k_1D']
node_score_threshold = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_score_threshold,
value=onnx.helper.make_tensor(
name=name_score_threshold[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[float(attrs['score_threshold'])]))
node_iou_threshold = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_iou_threshold,
value=onnx.helper.make_tensor(
name=name_iou_threshold[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[float(attrs['nms_threshold'])]))
node_keep_top_k = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_keep_top_k,
value=onnx.helper.make_tensor(
name=name_keep_top_k[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=(),
vals=[np.int64(attrs['keep_top_k'])]))
node_keep_top_k_2D = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_keep_top_k_2D,
value=onnx.helper.make_tensor(
name=name_keep_top_k_2D[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[1, 1],
vals=[np.int64(attrs['keep_top_k'])]))
# the paddle data format is x1,y1,x2,y2
kwargs = {'center_point_box': 0}
name_select_nms = [outputs['Out'][0] + "@select_index"]
node_select_nms= onnx.helper.make_node(
'NonMaxSuppression',
inputs=inputs['BBoxes'] + inputs['Scores'] + name_keep_top_k +\
name_iou_threshold + name_score_threshold,
outputs=name_select_nms)
# step 1 nodes select the nms class
node_list = [
node_score_threshold, node_iou_threshold, node_keep_top_k,
node_keep_top_k_2D, node_select_nms
]
# create some const value to use
name_const_value = [result_name+"@const_0",
result_name+"@const_1",\
result_name+"@const_2",\
result_name+"@const_-1"]
value_const_value = [0, 1, 2, -1]
for name, value in zip(name_const_value, value_const_value):
node = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=[name],
value=onnx.helper.make_tensor(
name=name + "@const",
data_type=onnx.TensorProto.INT64,
dims=[1],
vals=[value]))
node_list.append(node)
# Ine this code block, we will deocde the raw score data, reshape N * C * M to 1 * N*C*M
# and the same time, decode the select indices to 1 * D, gather the select_indices
outputs_gather_1 = [result_name + "@gather_1"]
node_gather_1 = onnx.helper.make_node(
'Gather',
inputs=name_select_nms + [result_name + "@const_1"],
outputs=outputs_gather_1,
axis=1)
node_list.append(node_gather_1)
outputs_squeeze_gather_1 = [result_name + "@sequeeze_gather_1"]
node_squeeze_gather_1 = onnx.helper.make_node(
'Squeeze',
inputs=outputs_gather_1,
outputs=outputs_squeeze_gather_1,
axes=[1])
node_list.append(node_squeeze_gather_1)
outputs_gather_2 = [result_name + "@gather_2"]
node_gather_2 = onnx.helper.make_node(
'Gather',
inputs=name_select_nms + [result_name + "@const_2"],
outputs=outputs_gather_2,
axis=1)
node_list.append(node_gather_2)
#slice the class is not 0
if background == 0:
outputs_nonzero = [result_name + "@nonzero"]
node_nonzero = onnx.helper.make_node(
'NonZero', inputs=outputs_squeeze_gather_1, outputs=outputs_nonzero)
node_list.append(node_nonzero)
else:
name_thresh = [result_name + "@thresh"]
node_thresh = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_thresh,
value=onnx.helper.make_tensor(
name=name_thresh[0] + "@const",
data_type=onnx.TensorProto.INT32,
dims=[1],
vals=[-1]))
node_list.append(node_thresh)
outputs_cast = [result_name + "@cast"]
node_cast = onnx.helper.make_node(
'Cast', inputs=outputs_squeeze_gather_1, outputs=outputs_cast, to=6)
node_list.append(node_cast)
outputs_greater = [result_name + "@greater"]
node_greater = onnx.helper.make_node(
'Greater',
inputs=outputs_cast + name_thresh,
outputs=outputs_greater)
node_list.append(node_greater)
outputs_nonzero = [result_name + "@nonzero"]
node_nonzero = onnx.helper.make_node(
'NonZero', inputs=outputs_greater, outputs=outputs_nonzero)
node_list.append(node_nonzero)
outputs_gather_1_nonzero = [result_name + "@gather_1_nonzero"]
node_gather_1_nonzero = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_1 + outputs_nonzero,
outputs=outputs_gather_1_nonzero,
axis=0)
node_list.append(node_gather_1_nonzero)
outputs_gather_2_nonzero = [result_name + "@gather_2_nonzero"]
node_gather_2_nonzero = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_2 + outputs_nonzero,
outputs=outputs_gather_2_nonzero,
axis=0)
node_list.append(node_gather_2_nonzero)
# reshape scores N * C * M to (N*C*M) * 1
outputs_reshape_scores_rank1 = [result_name + "@reshape_scores_rank1"]
node_reshape_scores_rank1 = onnx.helper.make_node(
"Reshape",
inputs=inputs['Scores'] + [result_name + "@const_-1"],
outputs=outputs_reshape_scores_rank1)
node_list.append(node_reshape_scores_rank1)
# get the shape of scores
outputs_shape_scores = [result_name + "@shape_scores"]
node_shape_scores = onnx.helper.make_node(
'Shape', inputs=inputs['Scores'], outputs=outputs_shape_scores)
node_list.append(node_shape_scores)
# gather the index: 2 shape of scores
outputs_gather_scores_dim1 = [result_name + "@gather_scores_dim1"]
node_gather_scores_dim1 = onnx.helper.make_node(
'Gather',
inputs=outputs_shape_scores + [result_name + "@const_2"],
outputs=outputs_gather_scores_dim1,
axis=0)
node_list.append(node_gather_scores_dim1)
# mul class * M
outputs_mul_classnum_boxnum = [result_name + "@mul_classnum_boxnum"]
node_mul_classnum_boxnum = onnx.helper.make_node(
'Mul',
inputs=outputs_gather_1_nonzero + outputs_gather_scores_dim1,
outputs=outputs_mul_classnum_boxnum)
node_list.append(node_mul_classnum_boxnum)
# add class * M * index
outputs_add_class_M_index = [result_name + "@add_class_M_index"]
node_add_class_M_index = onnx.helper.make_node(
'Add',
inputs=outputs_mul_classnum_boxnum + outputs_gather_2_nonzero,
outputs=outputs_add_class_M_index)
node_list.append(node_add_class_M_index)
# Squeeze the indices to 1 dim
outputs_squeeze_select_index = [result_name + "@squeeze_select_index"]
node_squeeze_select_index = onnx.helper.make_node(
'Squeeze',
inputs=outputs_add_class_M_index,
outputs=outputs_squeeze_select_index,
axes=[0, 2])
node_list.append(node_squeeze_select_index)
# gather the data from flatten scores
outputs_gather_select_scores = [result_name + "@gather_select_scores"]
node_gather_select_scores = onnx.helper.make_node('Gather',
inputs=outputs_reshape_scores_rank1 + \
outputs_squeeze_select_index,
outputs=outputs_gather_select_scores,
axis=0)
node_list.append(node_gather_select_scores)
# get nums to input TopK
outputs_shape_select_num = [result_name + "@shape_select_num"]
node_shape_select_num = onnx.helper.make_node(
'Shape',
inputs=outputs_gather_select_scores,
outputs=outputs_shape_select_num)
node_list.append(node_shape_select_num)
outputs_gather_select_num = [result_name + "@gather_select_num"]
node_gather_select_num = onnx.helper.make_node(
'Gather',
inputs=outputs_shape_select_num + [result_name + "@const_0"],
outputs=outputs_gather_select_num,
axis=0)
node_list.append(node_gather_select_num)
outputs_unsqueeze_select_num = [result_name + "@unsqueeze_select_num"]
node_unsqueeze_select_num = onnx.helper.make_node(
'Unsqueeze',
inputs=outputs_gather_select_num,
outputs=outputs_unsqueeze_select_num,
axes=[0])
node_list.append(node_unsqueeze_select_num)
outputs_concat_topK_select_num = [result_name + "@conat_topK_select_num"]
node_conat_topK_select_num = onnx.helper.make_node(
'Concat',
inputs=outputs_unsqueeze_select_num + name_keep_top_k_2D,
outputs=outputs_concat_topK_select_num,
axis=0)
node_list.append(node_conat_topK_select_num)
outputs_cast_concat_topK_select_num = [
result_name + "@concat_topK_select_num"
]
node_outputs_cast_concat_topK_select_num = onnx.helper.make_node(
'Cast',
inputs=outputs_concat_topK_select_num,
outputs=outputs_cast_concat_topK_select_num,
to=6)
node_list.append(node_outputs_cast_concat_topK_select_num)
# get min(topK, num_select)
outputs_compare_topk_num_select = [result_name + "@compare_topk_num_select"]
node_compare_topk_num_select = onnx.helper.make_node(
'ReduceMin',
inputs=outputs_cast_concat_topK_select_num,
outputs=outputs_compare_topk_num_select,
keepdims=0)
node_list.append(node_compare_topk_num_select)
# unsqueeze the indices to 1D tensor
outputs_unsqueeze_topk_select_indices = [
result_name + "@unsqueeze_topk_select_indices"
]
node_unsqueeze_topk_select_indices = onnx.helper.make_node(
'Unsqueeze',
inputs=outputs_compare_topk_num_select,
outputs=outputs_unsqueeze_topk_select_indices,
axes=[0])
node_list.append(node_unsqueeze_topk_select_indices)
# cast the indices to INT64
outputs_cast_topk_indices = [result_name + "@cast_topk_indices"]
node_cast_topk_indices = onnx.helper.make_node(
'Cast',
inputs=outputs_unsqueeze_topk_select_indices,
outputs=outputs_cast_topk_indices,
to=7)
node_list.append(node_cast_topk_indices)
# select topk scores indices
outputs_topk_select_topk_indices = [result_name + "@topk_select_topk_values",\
result_name + "@topk_select_topk_indices"]
node_topk_select_topk_indices = onnx.helper.make_node(
'TopK',
inputs=outputs_gather_select_scores + outputs_cast_topk_indices,
outputs=outputs_topk_select_topk_indices)
node_list.append(node_topk_select_topk_indices)
# gather topk label, scores, boxes
outputs_gather_topk_scores = [result_name + "@gather_topk_scores"]
node_gather_topk_scores = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_select_scores +
[outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_scores,
axis=0)
node_list.append(node_gather_topk_scores)
outputs_gather_topk_class = [result_name + "@gather_topk_class"]
node_gather_topk_class = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_1_nonzero + [outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_class,
axis=1)
node_list.append(node_gather_topk_class)
# gather the boxes need to gather the boxes id, then get boxes
outputs_gather_topk_boxes_id = [result_name + "@gather_topk_boxes_id"]
node_gather_topk_boxes_id = onnx.helper.make_node(
'Gather',
inputs=outputs_gather_2_nonzero + [outputs_topk_select_topk_indices[1]],
outputs=outputs_gather_topk_boxes_id,
axis=1)
node_list.append(node_gather_topk_boxes_id)
# squeeze the gather_topk_boxes_id to 1 dim
outputs_squeeze_topk_boxes_id = [result_name + "@squeeze_topk_boxes_id"]
node_squeeze_topk_boxes_id = onnx.helper.make_node(
'Squeeze',
inputs=outputs_gather_topk_boxes_id,
outputs=outputs_squeeze_topk_boxes_id,
axes=[0, 2])
node_list.append(node_squeeze_topk_boxes_id)
outputs_gather_select_boxes = [result_name + "@gather_select_boxes"]
node_gather_select_boxes = onnx.helper.make_node(
'Gather',
inputs=inputs['BBoxes'] + outputs_squeeze_topk_boxes_id,
outputs=outputs_gather_select_boxes,
axis=1)
node_list.append(node_gather_select_boxes)
# concat the final result
# before concat need to cast the class to float
outputs_cast_topk_class = [result_name + "@cast_topk_class"]
node_cast_topk_class = onnx.helper.make_node(
'Cast',
inputs=outputs_gather_topk_class,
outputs=outputs_cast_topk_class,
to=1)
node_list.append(node_cast_topk_class)
outputs_unsqueeze_topk_scores = [result_name + "@unsqueeze_topk_scores"]
node_unsqueeze_topk_scores = onnx.helper.make_node(
'Unsqueeze',
inputs=outputs_gather_topk_scores,
outputs=outputs_unsqueeze_topk_scores,
axes=[0, 2])
node_list.append(node_unsqueeze_topk_scores)
inputs_concat_final_results = outputs_cast_topk_class + outputs_unsqueeze_topk_scores +\
outputs_gather_select_boxes
outputs_concat_final_results = outputs['Out']
node_concat_final_results = onnx.helper.make_node(
'Concat',
inputs=inputs_concat_final_results,
outputs=outputs_concat_final_results,
axis=2)
node_list.append(node_concat_final_results)
return node_list
import onnx
import numpy as np
from onnx import onnx_pb, helper
def get_old_name(arg, name_prefix=''):
"""Get the old rame for a possible renamed argument
"""
prefix_index = arg.find(name_prefix)
if prefix_index != -1:
last_prefix = arg[len(name_prefix):]
else:
last_prefix = arg
idx = last_prefix.find('@')
if idx != -1:
last_prefix = last_prefix[:idx]
return name_prefix + last_prefix
def yolo_box(op, block):
inputs = dict()
outputs = dict()
attrs = dict()
for name in op.input_names:
inputs[name] = op.input(name)
for name in op.output_names:
outputs[name] = op.output(name)
for name in op.attr_names:
attrs[name] = op.attr(name)
model_name = outputs['Boxes'][0]
input_shape = block.vars[get_old_name(inputs['X'][0])].shape
image_size = inputs['ImgSize']
input_height = input_shape[2]
input_width = input_shape[3]
class_num = attrs['class_num']
anchors = attrs['anchors']
num_anchors = int(len(anchors)) // 2
downsample_ratio = attrs['downsample_ratio']
input_size = input_height * downsample_ratio
conf_thresh = attrs['conf_thresh']
conf_thresh_mat = np.ones([num_anchors * input_height * input_width
]) * conf_thresh
node_list = []
im_outputs = []
x_shape = [1, num_anchors, 5 + class_num, input_height, input_width]
name_x_shape = [model_name + "@x_shape"]
node_x_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_x_shape,
value=onnx.helper.make_tensor(
name=name_x_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[5],
vals=x_shape))
node_list.append(node_x_shape)
outputs_x_reshape = [model_name + "@reshape"]
node_x_reshape = onnx.helper.make_node(
'Reshape', inputs=inputs['X'] + name_x_shape, outputs=outputs_x_reshape)
node_list.append(node_x_reshape)
outputs_x_transpose = [model_name + "@x_transpose"]
node_x_transpose = onnx.helper.make_node(
'Transpose',
inputs=outputs_x_reshape,
outputs=outputs_x_transpose,
perm=[0, 1, 3, 4, 2])
node_list.append(node_x_transpose)
range_x = []
range_y = []
for i in range(0, input_width):
range_x.append(i)
for j in range(0, input_height):
range_y.append(j)
name_range_x = [model_name + "@range_x"]
node_range_x = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_range_x,
value=onnx.helper.make_tensor(
name=name_range_x[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=[input_width],
vals=range_x))
node_list.append(node_range_x)
name_range_y = [model_name + "@range_y"]
node_range_y = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_range_y,
value=onnx.helper.make_tensor(
name=name_range_y[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=[input_height],
vals=range_y))
node_list.append(node_range_y)
range_x_new_shape = [1, input_width]
range_y_new_shape = [input_height, 1]
name_range_x_new_shape = [model_name + "@range_x_new_shape"]
node_range_x_new_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_range_x_new_shape,
value=onnx.helper.make_tensor(
name=name_range_x_new_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(range_x_new_shape)],
vals=range_x_new_shape))
node_list.append(node_range_x_new_shape)
name_range_y_new_shape = [model_name + "@range_y_new_shape"]
node_range_y_new_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_range_y_new_shape,
value=onnx.helper.make_tensor(
name=name_range_y_new_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(range_y_new_shape)],
vals=range_y_new_shape))
node_list.append(node_range_y_new_shape)
outputs_range_x_reshape = [model_name + "@range_x_reshape"]
node_range_x_reshape = onnx.helper.make_node(
'Reshape',
inputs=name_range_x + name_range_x_new_shape,
outputs=outputs_range_x_reshape)
node_list.append(node_range_x_reshape)
outputs_range_y_reshape = [model_name + "@range_y_reshape"]
node_range_y_reshape = onnx.helper.make_node(
'Reshape',
inputs=name_range_y + name_range_y_new_shape,
outputs=outputs_range_y_reshape)
node_list.append(node_range_y_reshape)
outputs_grid_x = [model_name + "@grid_x"]
node_grid_x = onnx.helper.make_node(
"Tile",
inputs=outputs_range_x_reshape + name_range_y_new_shape,
outputs=outputs_grid_x)
node_list.append(node_grid_x)
outputs_grid_y = [model_name + "@grid_y"]
node_grid_y = onnx.helper.make_node(
"Tile",
inputs=outputs_range_y_reshape + name_range_x_new_shape,
outputs=outputs_grid_y)
node_list.append(node_grid_y)
outputs_box_x = [model_name + "@box_x"]
outputs_box_y = [model_name + "@box_y"]
outputs_box_w = [model_name + "@box_w"]
outputs_box_h = [model_name + "@box_h"]
outputs_conf = [model_name + "@conf"]
outputs_prob = [model_name + "@prob"]
node_split_input = onnx.helper.make_node(
"Split",
inputs=outputs_x_transpose,
outputs=outputs_box_x + outputs_box_y + outputs_box_w\
+ outputs_box_h + outputs_conf + outputs_prob,
axis=-1,
split=[1, 1, 1, 1, 1, class_num])
node_list.append(node_split_input)
outputs_box_x_sigmoid = [model_name + "@box_x_sigmoid"]
outputs_box_y_sigmoid = [model_name + "@box_y_sigmoid"]
node_box_x_sigmoid = onnx.helper.make_node(
"Sigmoid", inputs=outputs_box_x, outputs=outputs_box_x_sigmoid)
node_list.append(node_box_x_sigmoid)
node_box_y_sigmoid = onnx.helper.make_node(
"Sigmoid", inputs=outputs_box_y, outputs=outputs_box_y_sigmoid)
node_list.append(node_box_y_sigmoid)
outputs_box_x_squeeze = [model_name + "@box_x_squeeze"]
outputs_box_y_squeeze = [model_name + "@box_y_squeeze"]
node_box_x_squeeze = onnx.helper.make_node(
'Squeeze',
inputs=outputs_box_x_sigmoid,
outputs=outputs_box_x_squeeze,
axes=[4])
node_list.append(node_box_x_squeeze)
node_box_y_squeeze = onnx.helper.make_node(
'Squeeze',
inputs=outputs_box_y_sigmoid,
outputs=outputs_box_y_squeeze,
axes=[4])
node_list.append(node_box_y_squeeze)
outputs_box_x_add_grid = [model_name + "@box_x_add_grid"]
outputs_box_y_add_grid = [model_name + "@box_y_add_grid"]
node_box_x_add_grid = onnx.helper.make_node(
"Add",
inputs=outputs_grid_x + outputs_box_x_squeeze,
outputs=outputs_box_x_add_grid)
node_list.append(node_box_x_add_grid)
node_box_y_add_grid = onnx.helper.make_node(
"Add",
inputs=outputs_grid_y + outputs_box_y_squeeze,
outputs=outputs_box_y_add_grid)
node_list.append(node_box_y_add_grid)
name_input_h = [model_name + "@input_h"]
name_input_w = [model_name + "@input_w"]
node_input_h = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_input_h,
value=onnx.helper.make_tensor(
name=name_input_w[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[input_height]))
node_list.append(node_input_h)
node_input_w = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_input_w,
value=onnx.helper.make_tensor(
name=name_input_w[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[input_width]))
node_list.append(node_input_w)
outputs_box_x_encode = [model_name + "@box_x_encode"]
outputs_box_y_encode = [model_name + "@box_y_encode"]
node_box_x_encode = onnx.helper.make_node(
'Div',
inputs=outputs_box_x_add_grid + name_input_w,
outputs=outputs_box_x_encode)
node_list.append(node_box_x_encode)
node_box_y_encode = onnx.helper.make_node(
'Div',
inputs=outputs_box_y_add_grid + name_input_h,
outputs=outputs_box_y_encode)
node_list.append(node_box_y_encode)
name_anchor_tensor = [model_name + "@anchor_tensor"]
node_anchor_tensor = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_anchor_tensor,
value=onnx.helper.make_tensor(
name=name_anchor_tensor[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=[len(anchors)],
vals=anchors))
node_list.append(node_anchor_tensor)
anchor_shape = [int(num_anchors), 2]
name_anchor_shape = [model_name + "@anchor_shape"]
node_anchor_shape = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_anchor_shape,
value=onnx.helper.make_tensor(
name=name_anchor_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[2],
vals=anchor_shape))
node_list.append(node_anchor_shape)
outputs_anchor_tensor_reshape = [model_name + "@anchor_tensor_reshape"]
node_anchor_tensor_reshape = onnx.helper.make_node(
"Reshape",
inputs=name_anchor_tensor + name_anchor_shape,
outputs=outputs_anchor_tensor_reshape)
node_list.append(node_anchor_tensor_reshape)
name_input_size = [model_name + "@input_size"]
node_input_size = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_input_size,
value=onnx.helper.make_tensor(
name=name_input_size[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[input_size]))
node_list.append(node_input_size)
outputs_anchors_div_input_size = [model_name + "@anchors_div_input_size"]
node_anchors_div_input_size = onnx.helper.make_node(
"Div",
inputs=outputs_anchor_tensor_reshape + name_input_size,
outputs=outputs_anchors_div_input_size)
node_list.append(node_anchors_div_input_size)
outputs_anchor_w = [model_name + "@anchor_w"]
outputs_anchor_h = [model_name + "@anchor_h"]
node_anchor_split = onnx.helper.make_node(
'Split',
inputs=outputs_anchors_div_input_size,
outputs=outputs_anchor_w + outputs_anchor_h,
axis=1,
split=[1, 1])
node_list.append(node_anchor_split)
new_anchor_shape = [1, int(num_anchors), 1, 1]
name_new_anchor_shape = [model_name + "@new_anchor_shape"]
node_new_anchor_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_new_anchor_shape,
value=onnx.helper.make_tensor(
name=name_new_anchor_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(new_anchor_shape)],
vals=new_anchor_shape))
node_list.append(node_new_anchor_shape)
outputs_anchor_w_reshape = [model_name + "@anchor_w_reshape"]
outputs_anchor_h_reshape = [model_name + "@anchor_h_reshape"]
node_anchor_w_reshape = onnx.helper.make_node(
'Reshape',
inputs=outputs_anchor_w + name_new_anchor_shape,
outputs=outputs_anchor_w_reshape)
node_list.append(node_anchor_w_reshape)
node_anchor_h_reshape = onnx.helper.make_node(
'Reshape',
inputs=outputs_anchor_h + name_new_anchor_shape,
outputs=outputs_anchor_h_reshape)
node_list.append(node_anchor_h_reshape)
outputs_box_w_squeeze = [model_name + "@box_w_squeeze"]
node_box_w_squeeze = onnx.helper.make_node(
'Squeeze',
inputs=outputs_box_w,
outputs=outputs_box_w_squeeze,
axes=[4])
node_list.append(node_box_w_squeeze)
outputs_box_h_squeeze = [model_name + "@box_h_squeeze"]
node_box_h_squeeze = onnx.helper.make_node(
'Squeeze',
inputs=outputs_box_h,
outputs=outputs_box_h_squeeze,
axes=[4])
node_list.append(node_box_h_squeeze)
outputs_box_w_exp = [model_name + "@box_w_exp"]
node_box_w_exp = onnx.helper.make_node(
"Exp", inputs=outputs_box_w_squeeze, outputs=outputs_box_w_exp)
node_list.append(node_box_w_exp)
outputs_box_h_exp = [model_name + "@box_h_exp"]
node_box_h_exp = onnx.helper.make_node(
"Exp", inputs=outputs_box_h_squeeze, outputs=outputs_box_h_exp)
node_list.append(node_box_h_exp)
outputs_box_w_encode = [model_name + "box_w_encode"]
outputs_box_h_encode = [model_name + "box_h_encode"]
node_box_w_encode = onnx.helper.make_node(
'Mul',
inputs=outputs_box_w_exp + outputs_anchor_w_reshape,
outputs=outputs_box_w_encode)
node_list.append(node_box_w_encode)
node_box_h_encode = onnx.helper.make_node(
'Mul',
inputs=outputs_box_h_exp + outputs_anchor_h_reshape,
outputs=outputs_box_h_encode)
node_list.append(node_box_h_encode)
outputs_conf_sigmoid = [model_name + "@conf_sigmoid"]
node_conf_sigmoid = onnx.helper.make_node(
'Sigmoid', inputs=outputs_conf, outputs=outputs_conf_sigmoid)
node_list.append(node_conf_sigmoid)
name_conf_thresh = [model_name + "@conf_thresh"]
node_conf_thresh = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_conf_thresh,
value=onnx.helper.make_tensor(
name=name_conf_thresh[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=[num_anchors * input_height * input_width],
vals=conf_thresh_mat))
node_list.append(node_conf_thresh)
conf_shape = [1, int(num_anchors), input_height, input_width, 1]
name_conf_shape = [model_name + "@conf_shape"]
node_conf_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_conf_shape,
value=onnx.helper.make_tensor(
name=name_conf_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(conf_shape)],
vals=conf_shape))
node_list.append(node_conf_shape)
outputs_conf_thresh_reshape = [model_name + "@conf_thresh_reshape"]
node_conf_thresh_reshape = onnx.helper.make_node(
'Reshape',
inputs=name_conf_thresh + name_conf_shape,
outputs=outputs_conf_thresh_reshape)
node_list.append(node_conf_thresh_reshape)
outputs_conf_sub = [model_name + "@conf_sub"]
node_conf_sub = onnx.helper.make_node(
'Sub',
inputs=outputs_conf_sigmoid + outputs_conf_thresh_reshape,
outputs=outputs_conf_sub)
node_list.append(node_conf_sub)
outputs_conf_clip = [model_name + "@conf_clip"]
node_conf_clip = onnx.helper.make_node(
'Clip', inputs=outputs_conf_sub, outputs=outputs_conf_clip)
node_list.append(node_conf_clip)
zeros = [0]
name_zeros = [model_name + "@zeros"]
node_zeros = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_zeros,
value=onnx.helper.make_tensor(
name=name_zeros[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=zeros))
node_list.append(node_zeros)
outputs_conf_clip_bool = [model_name + "@conf_clip_bool"]
node_conf_clip_bool = onnx.helper.make_node(
'Greater',
inputs=outputs_conf_clip + name_zeros,
outputs=outputs_conf_clip_bool)
node_list.append(node_conf_clip_bool)
outputs_conf_clip_cast = [model_name + "@conf_clip_cast"]
node_conf_clip_cast = onnx.helper.make_node(
'Cast',
inputs=outputs_conf_clip_bool,
outputs=outputs_conf_clip_cast,
to=1)
node_list.append(node_conf_clip_cast)
outputs_conf_set_zero = [model_name + "@conf_set_zero"]
node_conf_set_zero = onnx.helper.make_node(
'Mul',
inputs=outputs_conf_sigmoid + outputs_conf_clip_cast,
outputs=outputs_conf_set_zero)
node_list.append(node_conf_set_zero)
outputs_prob_sigmoid = [model_name + "@prob_sigmoid"]
node_prob_sigmoid = onnx.helper.make_node(
'Sigmoid', inputs=outputs_prob, outputs=outputs_prob_sigmoid)
node_list.append(node_prob_sigmoid)
new_shape = [1, int(num_anchors), input_height, input_width, 1]
name_new_shape = [model_name + "@new_shape"]
node_new_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_new_shape,
value=onnx.helper.make_tensor(
name=name_new_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(new_shape)],
vals=new_shape))
node_list.append(node_new_shape)
outputs_conf_new_shape = [model_name + "@_conf_new_shape"]
node_conf_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_conf_set_zero + name_new_shape,
outputs=outputs_conf_new_shape)
node_list.append(node_conf_new_shape)
outputs_score = [model_name + "@score"]
node_score = onnx.helper.make_node(
'Mul',
inputs=outputs_prob_sigmoid + outputs_conf_new_shape,
outputs=outputs_score)
node_list.append(node_score)
outputs_conf_bool = [model_name + "@conf_bool"]
node_conf_bool = onnx.helper.make_node(
'Greater',
inputs=outputs_conf_new_shape + name_zeros,
outputs=outputs_conf_bool)
node_list.append(node_conf_bool)
outputs_box_x_new_shape = [model_name + "@box_x_new_shape"]
node_box_x_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_box_x_encode + name_new_shape,
outputs=outputs_box_x_new_shape)
node_list.append(node_box_x_new_shape)
outputs_box_y_new_shape = [model_name + "@box_y_new_shape"]
node_box_y_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_box_y_encode + name_new_shape,
outputs=outputs_box_y_new_shape)
node_list.append(node_box_y_new_shape)
outputs_box_w_new_shape = [model_name + "@box_w_new_shape"]
node_box_w_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_box_w_encode + name_new_shape,
outputs=outputs_box_w_new_shape)
node_list.append(node_box_w_new_shape)
outputs_box_h_new_shape = [model_name + "@box_h_new_shape"]
node_box_h_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_box_h_encode + name_new_shape,
outputs=outputs_box_h_new_shape)
node_list.append(node_box_h_new_shape)
outputs_pred_box = [model_name + "@pred_box"]
node_pred_box = onnx.helper.make_node(
'Concat',
inputs=outputs_box_x_new_shape + outputs_box_y_new_shape + \
outputs_box_w_new_shape + outputs_box_h_new_shape,
outputs=outputs_pred_box,
axis=4)
node_list.append(node_pred_box)
outputs_conf_cast = [model_name + "conf_cast"]
node_conf_cast = onnx.helper.make_node(
'Cast', inputs=outputs_conf_bool, outputs=outputs_conf_cast, to=1)
node_list.append(node_conf_cast)
outputs_pred_box_mul_conf = [model_name + "@pred_box_mul_conf"]
node_pred_box_mul_conf = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box + outputs_conf_cast,
outputs=outputs_pred_box_mul_conf)
node_list.append(node_pred_box_mul_conf)
box_shape = [1, int(num_anchors) * input_height * input_width, 4]
name_box_shape = [model_name + "@box_shape"]
node_box_shape = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_box_shape,
value=onnx.helper.make_tensor(
name=name_box_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(box_shape)],
vals=box_shape))
node_list.append(node_box_shape)
outputs_pred_box_new_shape = [model_name + "@pred_box_new_shape"]
node_pred_box_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_pred_box_mul_conf + name_box_shape,
outputs=outputs_pred_box_new_shape)
node_list.append(node_pred_box_new_shape)
outputs_pred_box_x = [model_name + "@_pred_box_x"]
outputs_pred_box_y = [model_name + "@_pred_box_y"]
outputs_pred_box_w = [model_name + "@_pred_box_w"]
outputs_pred_box_h = [model_name + "@_pred_box_h"]
node_pred_box_split = onnx.helper.make_node(
'Split',
inputs=outputs_pred_box_new_shape,
outputs=outputs_pred_box_x + outputs_pred_box_y + outputs_pred_box_w +
outputs_pred_box_h,
axis=2)
node_list.append(node_pred_box_split)
name_number_two = [model_name + "@number_two"]
node_number_two = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_number_two,
value=onnx.helper.make_tensor(
name=name_number_two[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[2]))
node_list.append(node_number_two)
outputs_half_w = [model_name + "@half_w"]
node_half_w = onnx.helper.make_node(
"Div",
inputs=outputs_pred_box_w + name_number_two,
outputs=outputs_half_w)
node_list.append(node_half_w)
outputs_half_h = [model_name + "@half_h"]
node_half_h = onnx.helper.make_node(
"Div",
inputs=outputs_pred_box_h + name_number_two,
outputs=outputs_half_h)
node_list.append(node_half_h)
outputs_pred_box_x1 = [model_name + "@pred_box_x1"]
node_pred_box_x1 = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_x + outputs_half_w,
outputs=outputs_pred_box_x1)
node_list.append(node_pred_box_x1)
outputs_pred_box_y1 = [model_name + "@pred_box_y1"]
node_pred_box_y1 = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_y + outputs_half_h,
outputs=outputs_pred_box_y1)
node_list.append(node_pred_box_y1)
outputs_pred_box_x2 = [model_name + "@pred_box_x2"]
node_pred_box_x2 = onnx.helper.make_node(
'Add',
inputs=outputs_pred_box_x + outputs_half_w,
outputs=outputs_pred_box_x2)
node_list.append(node_pred_box_x2)
outputs_pred_box_y2 = [model_name + "@pred_box_y2"]
node_pred_box_y2 = onnx.helper.make_node(
'Add',
inputs=outputs_pred_box_y + outputs_half_h,
outputs=outputs_pred_box_y2)
node_list.append(node_pred_box_y2)
outputs_sqeeze_image_size = [model_name + "@sqeeze_image_size"]
node_sqeeze_image_size = onnx.helper.make_node(
"Squeeze",
axes=[0],
inputs=image_size,
outputs=outputs_sqeeze_image_size)
node_list.append(node_sqeeze_image_size)
output_img_height = [model_name + "@img_height"]
output_img_width = [model_name + "@img_width"]
node_image_size_split = onnx.helper.make_node(
"Split",
inputs=outputs_sqeeze_image_size,
outputs=output_img_height + output_img_width,
axis=-1,
split=[1, 1])
node_list.append(node_image_size_split)
output_img_width_cast = [model_name + "@img_width_cast"]
node_img_width_cast = onnx.helper.make_node(
'Cast', inputs=output_img_width, outputs=output_img_width_cast, to=1)
node_list.append(node_img_width_cast)
output_img_height_cast = [model_name + "@img_height_cast"]
node_img_height_cast = onnx.helper.make_node(
'Cast', inputs=output_img_height, outputs=output_img_height_cast, to=1)
node_list.append(node_img_height_cast)
outputs_pred_box_x1_decode = [model_name + "@pred_box_x1_decode"]
outputs_pred_box_y1_decode = [model_name + "@pred_box_y1_decode"]
outputs_pred_box_x2_decode = [model_name + "@pred_box_x2_decode"]
outputs_pred_box_y2_decode = [model_name + "@pred_box_y2_decode"]
node_pred_box_x1_decode = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box_x1 + output_img_width_cast,
outputs=outputs_pred_box_x1_decode)
node_list.append(node_pred_box_x1_decode)
node_pred_box_y1_decode = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box_y1 + output_img_height_cast,
outputs=outputs_pred_box_y1_decode)
node_list.append(node_pred_box_y1_decode)
node_pred_box_x2_decode = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box_x2 + output_img_width_cast,
outputs=outputs_pred_box_x2_decode)
node_list.append(node_pred_box_x2_decode)
node_pred_box_y2_decode = onnx.helper.make_node(
'Mul',
inputs=outputs_pred_box_y2 + output_img_height_cast,
outputs=outputs_pred_box_y2_decode)
node_list.append(node_pred_box_y2_decode)
name_number_one = [model_name + "@one"]
node_number_one = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=name_number_one,
value=onnx.helper.make_tensor(
name=name_number_one[0] + "@const",
data_type=onnx.TensorProto.FLOAT,
dims=(),
vals=[1]))
node_list.append(node_number_one)
output_new_img_height = [model_name + "@new_img_height"]
node_new_img_height = onnx.helper.make_node(
'Sub',
inputs=output_img_height_cast + name_number_one,
outputs=output_new_img_height)
node_list.append(node_new_img_height)
output_new_img_width = [model_name + "@new_img_width"]
node_new_img_width = onnx.helper.make_node(
'Sub',
inputs=output_img_width_cast + name_number_one,
outputs=output_new_img_width)
node_list.append(node_new_img_width)
outputs_pred_box_x2_sub_w = [model_name + "@pred_box_x2_sub_w"]
node_pred_box_x2_sub_w = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_x2_decode + output_new_img_width,
outputs=outputs_pred_box_x2_sub_w)
node_list.append(node_pred_box_x2_sub_w)
outputs_pred_box_y2_sub_h = [model_name + "@pred_box_y2_sub_h"]
node_pred_box_y2_sub_h = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_y2_decode + output_new_img_height,
outputs=outputs_pred_box_y2_sub_h)
node_list.append(node_pred_box_y2_sub_h)
outputs_pred_box_x1_clip = [model_name + "@pred_box_x1_clip"]
outputs_pred_box_y1_clip = [model_name + "@pred_box_y1_clip"]
outputs_pred_box_x2_clip = [model_name + "@pred_box_x2_clip"]
outputs_pred_box_y2_clip = [model_name + "@pred_box_y2_clip"]
node_pred_box_x1_clip = onnx.helper.make_node(
'Clip',
inputs=outputs_pred_box_x1_decode,
outputs=outputs_pred_box_x1_clip,
min=0.0,
max=float(np.inf))
node_list.append(node_pred_box_x1_clip)
node_pred_box_y1_clip = onnx.helper.make_node(
'Clip',
inputs=outputs_pred_box_y1_decode,
outputs=outputs_pred_box_y1_clip,
min=0.0,
max=float(np.inf))
node_list.append(node_pred_box_y1_clip)
node_pred_box_x2_clip = onnx.helper.make_node(
'Clip',
inputs=outputs_pred_box_x2_sub_w,
outputs=outputs_pred_box_x2_clip,
min=0.0,
max=float(np.inf))
node_list.append(node_pred_box_x2_clip)
node_pred_box_y2_clip = onnx.helper.make_node(
'Clip',
inputs=outputs_pred_box_y2_sub_h,
outputs=outputs_pred_box_y2_clip,
min=0.0,
max=float(np.inf))
node_list.append(node_pred_box_y2_clip)
outputs_pred_box_x2_res = [model_name + "@box_x2_res"]
node_pred_box_x2_res = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_x2_decode + outputs_pred_box_x2_clip,
outputs=outputs_pred_box_x2_res)
node_list.append(node_pred_box_x2_res)
outputs_pred_box_y2_res = [model_name + "@box_y2_res"]
node_pred_box_y2_res = onnx.helper.make_node(
'Sub',
inputs=outputs_pred_box_y2_decode + outputs_pred_box_y2_clip,
outputs=outputs_pred_box_y2_res)
node_list.append(node_pred_box_y2_res)
node_pred_box_result = onnx.helper.make_node(
'Concat',
inputs=outputs_pred_box_x1_clip + outputs_pred_box_y1_clip +
outputs_pred_box_x2_res + outputs_pred_box_y2_res,
outputs=outputs['Boxes'],
axis=-1)
node_list.append(node_pred_box_result)
score_shape = [1, input_height * input_width * int(num_anchors), class_num]
name_score_shape = [model_name + "@score_shape"]
node_score_shape = onnx.helper.make_node(
"Constant",
inputs=[],
outputs=name_score_shape,
value=onnx.helper.make_tensor(
name=name_score_shape[0] + "@const",
data_type=onnx.TensorProto.INT64,
dims=[len(score_shape)],
vals=score_shape))
node_list.append(node_score_shape)
node_score_new_shape = onnx.helper.make_node(
'Reshape',
inputs=outputs_score + name_score_shape,
outputs=outputs['Scores'])
node_list.append(node_score_new_shape)
return node_list
......@@ -21,6 +21,8 @@ import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
from onnx import helper, onnx_pb
from .paddle_custom_layer.yolo_box import yolo_box
from .paddle_custom_layer.multiclass_nms import multiclass_nms
class PaddleOpMapper(object):
......@@ -73,6 +75,19 @@ class PaddleOpMapper(object):
pads=op.attr('paddings') + op.attr('paddings'))
return node
def conv2d_transpose(self, op, block):
kernel_shape = block.var(op.input('Filter')[0]).shape
node = helper.make_node(
'ConvTranspose',
inputs=op.input('Input') + op.input('Filter'),
outputs=op.output('Output'),
dilations=op.attr('dilations'),
kernel_shape=kernel_shape[-2:],
strides=op.attr('strides'),
group=1,
pads=op.attr('paddings') + op.attr('paddings'))
return node
def relu(self, op, block):
node = helper.make_node(
'Relu', inputs=op.input('X'), outputs=op.output('Out'))
......@@ -83,6 +98,19 @@ class PaddleOpMapper(object):
'Sigmoid', inputs=op.input('X'), outputs=op.output('Out'))
return node
def exp(self, op, block):
node = helper.make_node(
'Exp', inputs=op.input('X'), outputs=op.output('Out'))
return node
def leaky_relu(self, op, block):
node = helper.make_node(
'LeakyRelu',
inputs=op.input('X'),
outputs=op.output('Out'),
alpha=op.attr('alpha'))
return node
def elementwise_add(self, op, block):
axis = op.attr('axis')
x_shape = block.var(op.input('X')[0]).shape
......@@ -112,6 +140,35 @@ class PaddleOpMapper(object):
else:
raise Excpetion("Unexpected situation happend in elementwise_add")
def elementwise_sub(self, op, block):
axis = op.attr('axis')
x_shape = block.var(op.input('X')[0]).shape
y_shape = block.var(op.input('Y')[0]).shape
if len(y_shape) == 1 and axis == 1:
shape_name = self.get_name(op.type, 'shape')
shape_value = [1] * len(x_shape)
shape_value[axis] = y_shape[0]
shape_node = self.make_constant_node(
shape_name, onnx_pb.TensorProto.INT64, shape_value)
temp_value = self.get_name(op.type, 'temp')
y_node = helper.make_node(
'Reshape',
inputs=[op.input('Y')[0], shape_name],
outputs=[temp_value])
node = helper.make_node(
'Sub',
inputs=[op.input('X')[0], temp_value],
outputs=op.output('Out'))
return [shape_node, y_node, node]
elif len(x_shape) == len(y_shape):
node = helper.make_node(
'Sub',
inputs=[op.input('X')[0], op.input('Y')[0]],
outputs=op.output('Out'))
return node
else:
raise Excpetion("Unexpected situation happend in elementwise_sub")
def pool2d(self, op, block):
pool_type = {
'max': ('MaxPool', 'GlobalMaxPool'),
......@@ -412,10 +469,12 @@ class PaddleOpMapper(object):
def bilinear_interp(self, op, block):
input_names = op.input_names
coordinate_transformation_mode = 'half_pixel'
shape_dtype = block.var(op.input('OutSize')[0]).dtype
if op.attr('align_corners'):
coordinate_transformation_mode = 'align_corners'
if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
if ('OutSize' in input_names and len(op.input('OutSize')) > 0) or (
'SizeTensor' in input_names
and len(op.input('SizeTensor')) > 0):
node_list = list()
roi_node = self.make_constant_node(
self.get_name(op.type, 'roi'), onnx_pb.TensorProto.FLOAT,
[1, 1, 1, 1, 1, 1, 1, 1])
......@@ -444,16 +503,42 @@ class PaddleOpMapper(object):
'Slice',
inputs=[shape_name0, starts_name, ends_name],
outputs=[shape_name1])
shape_name2 = self.get_name(op.type, "shape.cast")
shape_node2 = helper.make_node(
node_list.extend([
roi_node, empty_node, shape_node0, starts_node, ends_node,
shape_node1
])
# shape_name2 = self.get_name(op.type, "shape.cast")
# shape_node2 = helper.make_node(
# 'Cast',
# inputs=op.input('OutSize'),
# outputs=[shape_name2],
# to=onnx_pb.TensorProto.INT64)
if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
cast_shape_name = self.get_name(op.type, "shape.cast")
cast_shape_node = helper.make_node(
'Cast',
inputs=op.input('OutSize'),
outputs=[shape_name2],
outputs=[cast_shape_name],
to=onnx_pb.TensorProto.INT64)
node_list.append(cast_shape_node)
else:
concat_shape_name = self.get_name(op.type, "shape.concat")
concat_shape_node = helper.make_node(
"Concat",
inputs=op.input('SizeTensor'),
outputs=[concat_shape_name],
axis=0)
cast_shape_name = self.get_name(op.type, "shape.cast")
cast_shape_node = helper.make_node(
'Cast',
inputs=[concat_shape_name],
outputs=[cast_shape_name],
to=onnx_pb.TensorProto.INT64)
node_list.extend([concat_shape_node, cast_shape_node])
shape_name3 = self.get_name(op.type, "shape.concat")
shape_node3 = helper.make_node(
'Concat',
inputs=[shape_name1, shape_name2],
inputs=[shape_name1, cast_shape_name],
outputs=[shape_name3],
axis=0)
result_node = helper.make_node(
......@@ -462,10 +547,8 @@ class PaddleOpMapper(object):
outputs=op.output('Out'),
mode='linear',
coordinate_transformation_mode=coordinate_transformation_mode)
return [
roi_node, empty_node, shape_node0, starts_node, ends_node,
shape_node1, shape_node2, shape_node3, result_node
]
node_list.extend([shape_node3, result_node])
return node_list
elif 'Scale' in input_names and len(op.input('Scale')) > 0:
node = helper.make_node(
'Resize',
......@@ -552,6 +635,41 @@ class PaddleOpMapper(object):
beta=offset)
return node
def hard_swish(self, op, block):
min_name = self.get_name(op.type, 'min')
max_name = self.get_name(op.type, 'max')
scale_name = self.get_name(op.type, 'scale')
offset_name = self.get_name(op.type, 'offset')
min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
0)
max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
op.attr('threshold'))
scale_node = self.make_constant_node(scale_name,
onnx_pb.TensorProto.FLOAT,
op.attr('scale'))
offset_node = self.make_constant_node(offset_name,
onnx_pb.TensorProto.FLOAT,
op.attr('offset'))
name0 = self.get_name(op.type, 'add')
node0 = helper.make_node(
'Add', inputs=[op.input('X')[0], offset_name], outputs=[name0])
name1 = self.get_name(op.type, 'relu')
node1 = helper.make_node(
'Clip',
inputs=[name0, min_name, max_name],
outputs=[name1],
)
name2 = self.get_name(op.type, 'mul')
node2 = helper.make_node(
'Mul', inputs=[op.input('X')[0], name1], outputs=[name2])
node3 = helper.make_node(
'Div', inputs=[name2, scale_name], outputs=op.output('Out'))
return [
min_node, max_node, scale_node, offset_node, node0, node1, node2,
node3
]
def elementwise_mul(self, op, block):
axis = op.attr('axis')
x_shape = block.var(op.input('X')[0]).shape
......@@ -617,6 +735,18 @@ class PaddleOpMapper(object):
keepdims=0)
return node
def yolo_box(self, op, block):
return yolo_box(op, block)
def multiclass_nms(self, op, block):
return multiclass_nms(op, block)
def reciprocal(self, op, block):
inputs = op.input(op.input_names[0])
outputs = op.output(op.output_names[0])
node = helper.make_node('Reciprocal', inputs=inputs, outputs=outputs)
return node
def convert_weights(self, program):
var_names = program.global_block().vars
nodes = list()
......@@ -651,6 +781,7 @@ class PaddleOpMapper(object):
sys.stdout.write(
"\rTotal:{}, Current:{} : {} ".format(
len(block.ops), i + 1, op.type))
sys.stdout.flush()
if not hasattr(self, op.type):
unsupported_ops.add(op.type)
continue
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册