diff --git a/x2paddle/op_mapper/tf_op_mapper_nhwc.py b/x2paddle/op_mapper/tf_op_mapper_nhwc.py index 06fec6923cca4ffdfee4b04070ba2c7f1bcd9906..8c58d87f65ddaa32cbd353ac98acb7843a8de46a 100644 --- a/x2paddle/op_mapper/tf_op_mapper_nhwc.py +++ b/x2paddle/op_mapper/tf_op_mapper_nhwc.py @@ -320,23 +320,11 @@ class TFOpMapperNHWC(OpMapper): strides = [strides[i] for i in [0, 3, 1, 2]] k_size = [k_size[i] for i in [0, 3, 1, 2]] input = node - - if pad_mode == "SAME": - pad_h = get_same_padding(in_shape[2], k_size[2], strides[2]) - pad_w = get_same_padding(in_shape[3], k_size[3], strides[3]) - pad_h = pad_h[0] + pad_h[1] - pad_w = pad_w[0] + pad_w[1] - attr = {"paddings": [0, pad_h, 0, pad_w], "pad_value": -10000.0} - if pad_h + pad_w != 0: - node.fluid_code.add_layer("pad2d", - inputs=input, - output=node, - param_attr=attr) - input = node attr = { "pool_size": k_size[2:4], "pool_type": string("max"), - "pool_stride": strides[2:4] + "pool_stride": strides[2:4], + "pool_padding": string(pad_mode) } node.fluid_code.add_layer("pool2d", inputs=input, @@ -368,7 +356,6 @@ class TFOpMapperNHWC(OpMapper): data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() channel_first = data_format == "NCHW" - padding = 0 self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( kernel.value, (3, 2, 0, 1)) @@ -384,18 +371,6 @@ class TFOpMapperNHWC(OpMapper): param_attr=attr) input = node - if pad_mode == "SAME": - pad_h = get_same_padding(in_shape[2], k_size[0], strides[2]) - pad_w = get_same_padding(in_shape[3], k_size[1], strides[3]) - if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]: - padding = [pad_h[0], pad_w[0]] - else: - attr = {"paddings": pad_h + pad_w, "pad_value": 0.0} - node.fluid_code.add_layer("pad2d", - inputs=input, - output=node, - param_attr=attr) - input = node attr = { "bias_attr": False, "param_attr": string(kernel.layer_name), @@ -403,7 +378,7 @@ class TFOpMapperNHWC(OpMapper): "filter_size": k_size[0:2], "stride": strides[2:4], "dilation": dilations[2:4], - "padding": padding + "padding": string(pad_mode) } node.fluid_code.add_layer("conv2d", inputs=input, @@ -490,7 +465,6 @@ class TFOpMapperNHWC(OpMapper): data_format = node.get_attr("data_format").decode() pad_mode = node.get_attr("padding").decode() channel_first = data_format == "NCHW" - padding = 0 self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose( kernel.value, (2, 3, 0, 1)) @@ -506,19 +480,6 @@ class TFOpMapperNHWC(OpMapper): param_attr=attr) input = node - if pad_mode == "SAME": - pad_h = get_same_padding(in_shape[2], k_size[0], strides[2]) - pad_w = get_same_padding(in_shape[3], k_size[1], strides[3]) - if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]: - padding = [pad_h[0], pad_w[0]] - else: - attr = {"paddings": pad_h + pad_w, "pad_value": 0.0} - node.fluid_code.add_layer("pad2d", - inputs=input, - output=node, - param_attr=attr) - input = node - attr = { "bias_attr": False, "param_attr": string(kernel.layer_name), @@ -528,7 +489,7 @@ class TFOpMapperNHWC(OpMapper): "dilation": dilations[2:4], "groups": k_size[3] * in_shape[1], "use_cudnn": False, - "padding": padding + "padding": string(pad_mode) } node.fluid_code.add_layer("conv2d", inputs=input, @@ -623,14 +584,9 @@ class TFOpMapperNHWC(OpMapper): attr = { "pool_size": k_size[2:4], "pool_type": string("avg"), - "pool_stride": strides[2:4] + "pool_stride": strides[2:4], + "pool_padding": string(pad_mode) } - if pad_mode == "SAME": - pad_h = get_same_padding(in_shape[2], k_size[2], strides[2]) - pad_w = get_same_padding(in_shape[3], k_size[3], strides[3]) - assert pad_h[0] == pad_h[1] and pad_w[0] == pad_w[ - 1], "Cannot map AvgPool" - attr["pool_padding"] = [pad_h[0], pad_w[0]] node.fluid_code.add_layer("pool2d", inputs=input, output=node, @@ -990,20 +946,6 @@ class TFOpMapperNHWC(OpMapper): else: self.data_format_propagation(node) - padding = 0 - if pad_mode == "SAME": - pad_h = get_same_padding(in_shape[2], k_size[0], strides[2]) - pad_w = get_same_padding(in_shape[3], k_size[1], strides[3]) - if pad_h[0] == pad_h[1] and pad_w[0] == pad_w[1]: - padding = [pad_h[0], pad_w[0]] - else: - attr = {"paddings": pad_h + pad_w, "pad_value": 0.0} - node.fluid_code.add_layer("pad2d", - inputs=input, - output=node, - param_attr=attr) - input = node - attr = { "bias_attr": False, "param_attr": string(kernel.layer_name), @@ -1011,29 +953,14 @@ class TFOpMapperNHWC(OpMapper): "filter_size": k_size[0:2], "stride": strides[2:4], "dilation": dilations[2:4], - "padding": padding + "output_size": out_shape[1:3], + "padding": string(pad_mode) } node.fluid_code.add_layer("conv2d_transpose", inputs=input, output=node, param_attr=attr) - if pad_mode == "SAME": - if node.tf_data_format == "NHWC": - out_shape = [out_shape[i] for i in [0, 3, 1, 2]] - for i in range(4): - if out_shape[i] < 0: - out_shape[i] = 999999 - attr = { - "axes": [0, 1, 2, 3], - "starts": [0, 0, 0, 0], - "ends": out_shape - } - node.fluid_code.add_layer("slice", - inputs=node, - output=node, - param_attr=attr) - if not channel_first: attr = {"perm": [0, 2, 3, 1]} node.fluid_code.add_layer("transpose",