Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
aa58ad3d
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
aa58ad3d
编写于
9月 04, 2019
作者:
J
Jason
提交者:
GitHub
9月 04, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3 from PaddlePaddle/develop
dev
上级
d1516a29
db487dda
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
161 addition
and
62 deletion
+161
-62
FAQ.md
FAQ.md
+2
-3
README.md
README.md
+2
-1
caffe_custom_layer.md
caffe_custom_layer.md
+14
-0
x2paddle/convert.py
x2paddle/convert.py
+4
-1
x2paddle/decoder/caffe_decoder.py
x2paddle/decoder/caffe_decoder.py
+0
-1
x2paddle/op_mapper/caffe_custom_layer/convolutiondepthwise.py
...ddle/op_mapper/caffe_custom_layer/convolutiondepthwise.py
+30
-12
x2paddle/op_mapper/caffe_op_mapper.py
x2paddle/op_mapper/caffe_op_mapper.py
+83
-37
x2paddle/op_mapper/caffe_shape.py
x2paddle/op_mapper/caffe_shape.py
+15
-6
x2paddle_model_zoo.md
x2paddle_model_zoo.md
+11
-1
未找到文件。
FAQ.md
浏览文件 @
aa58ad3d
...
...
@@ -5,10 +5,9 @@ A:该提示信息表示无法从TensorFlow的pb模型中获取到输入tensor(
**Q2. TensorFlow模型转换失败怎么解决?**
A: 如果并非是由缺少OP导致,那可能是由于TensorFlow模型转换时(NHWC->NCHW格式转换导致),在这种情况下,
可以采用关闭格式优化
,同时固化输入大小的方式,继续尝试转换,见如下命令,转换过程中,根据提示,输入相应tensor的固化shape大小
A: 如果并非是由缺少OP导致,那可能是由于TensorFlow模型转换时(NHWC->NCHW格式转换导致),在这种情况下,
采用如下方式进行转换
,同时固化输入大小的方式,继续尝试转换,见如下命令,转换过程中,根据提示,输入相应tensor的固化shape大小
```
x2paddle -f tensorflow -m tf.pb -s pd-model --without_data_format_optimization --define_input_shape
```
> 1. 目前Tensorflow的CV模型大部分均为`NHWC`的输入格式,而Paddle的默认输入格式为`NCHW`,因此X2Paddle在转换过程中,会对如`axis`, `shape`等参数进行转换,适应Paddle的NCHW格式。但在这种情况下,可能会由于TensorFlow模型太复杂,导致出错。
> 2. X2Paddle默认情况,TensorFlow模型转换后得到的Paddle模型为`NCHW`的输入格式。但在指定`--withou_data_format_optimization`后,转换后的Paddle模型输入格式也同样为`NHWC`。
> 1. 目前Tensorflow的CV模型大部分均为`NHWC`的输入格式,而Paddle的默认输入格式为`NCHW`,因此X2Paddle在转换过程中,会对如`axis`, `shape`等参数进行转换,适应Paddle的NCHW格式。但在这种情况下,可能会由于TensorFlow模型太复杂,导致出错。 指定`--without_data_format_optimization`后,会停止对`axis`,`shape`等参数的优化(这可能会带来一定数量的transpose操作)
README.md
浏览文件 @
aa58ad3d
...
...
@@ -14,7 +14,7 @@ paddlepaddle >= 1.5.0
**按需安装以下依赖**
tensorflow : tensorflow == 1.14.0
caffe :
caffe == 1.0.0
caffe :
无
onnx : onnx == 1.5.0 pytorch == 1.1.0
## 安装
...
...
@@ -79,6 +79,7 @@ X2Paddle提供了工具解决如下问题,详见[tools/README.md](tools/README
2.
[
如何导出TensorFlow的pb模型
](
export_tf_model.md
)
3.
[
X2Paddle测试模型库
](
x2paddle_model_zoo.md
)
4.
[
PyTorch模型导出为ONNX模型
](
pytorch_to_onnx.md
)
5.
[
X2Paddle内置的Caffe自定义层
](
caffe_custom_layer.md
)
## 更新历史
2019.
08.05
...
...
caffe_custom_layer.md
0 → 100644
浏览文件 @
aa58ad3d
目前,代码中已经提供了8个非官方op(不在
[
官网
](
http://caffe.berkeleyvision.org/tutorial/layers
)
上的op)的转换,这些op对应的Caffe实现源码如下:
| op | 该版本实现源码 |
|-------|--------|
| PriorBox |
[
code
](
https://github.com/weiliu89/caffe/blob/ssd/src/caffe/layers/prior_box_layer.cpp
)
|
| DetectionOutput |
[
code
](
https://github.com/weiliu89/caffe/blob/ssd/src/caffe/layers/detection_output_layer.cpp
)
|
| ConvolutionDepthwise |
[
code
](
https://github.com/farmingyard/caffe-mobilenet/blob/master/conv_dw_layer.cpp
)
|
| ShuffleChannel |
[
code
](
https://github.com/farmingyard/ShuffleNet/blob/master/shuffle_channel_layer.cpp
)
|
| Permute |
[
code
](
https://github.com/weiliu89/caffe/blob/ssd/src/caffe/layers/permute_layer.cpp
)
|
| Normalize |
[
code
](
https://github.com/weiliu89/caffe/blob/ssd/src/caffe/layers/normalize_layer.cpp
)
|
| ROIPooling |
[
code
](
https://github.com/rbgirshick/caffe-fast-rcnn/blob/0dcd397b29507b8314e252e850518c5695efbb83/src/caffe/layers/roi_pooling_layer.cpp
)
|
| Axpy |
[
code
](
https://github.com/hujie-frank/SENet/blob/master/src/caffe/layers/axpy_layer.cpp
)
|
x2paddle/convert.py
浏览文件 @
aa58ad3d
...
...
@@ -124,7 +124,10 @@ def caffe2paddle(proto, weight, save_dir, caffe_proto):
from
x2paddle.decoder.caffe_decoder
import
CaffeDecoder
from
x2paddle.op_mapper.caffe_op_mapper
import
CaffeOpMapper
from
x2paddle.optimizer.caffe_optimizer
import
CaffeOptimizer
import
google.protobuf
as
gpb
ver_str
=
gpb
.
__version__
.
replace
(
'.'
,
''
)
ver_int
=
int
(
ver_str
[
0
:
2
])
assert
ver_int
>=
36
,
'The version of protobuf must be larger than 3.6.0!'
print
(
"Now translating model from caffe to paddle."
)
model
=
CaffeDecoder
(
proto
,
weight
,
caffe_proto
)
mapper
=
CaffeOpMapper
(
model
)
...
...
x2paddle/decoder/caffe_decoder.py
浏览文件 @
aa58ad3d
...
...
@@ -190,7 +190,6 @@ class CaffeGraph(Graph):
top_layer
[
out_name
]
=
[
layer
.
name
]
else
:
top_layer
[
out_name
].
append
(
layer
.
name
)
for
layer_name
,
data
in
self
.
params
:
if
layer_name
in
self
.
node_map
:
node
=
self
.
node_map
[
layer_name
]
...
...
x2paddle/op_mapper/caffe_custom_layer/convolutiondepthwise.py
浏览文件 @
aa58ad3d
...
...
@@ -19,20 +19,29 @@ def convolutiondepthwise_shape(input_shape,
if
isinstance
(
kernel_size
,
numbers
.
Number
):
[
k_h
,
k_w
]
=
[
kernel_size
]
*
2
elif
len
(
kernel_size
)
>
0
:
k_h
=
kernel_h
if
kernel_h
else
kernel_size
[
0
]
k_w
=
kernel_w
if
kernel_w
else
kernel_size
[
len
(
kernel_size
)
-
1
]
k_h
=
kernel_h
if
kernel_h
>
0
else
kernel_size
[
0
]
k_w
=
kernel_w
if
kernel_w
>
0
else
kernel_size
[
len
(
kernel_size
)
-
1
]
elif
kernel_h
>
0
or
kernel_w
>
0
:
k_h
=
kernel_h
k_w
=
kernel_w
[
s_h
,
s_w
]
=
[
1
,
1
]
if
isinstance
(
stride
,
numbers
.
Number
):
[
s_h
,
s_w
]
=
[
stride
]
*
2
elif
len
(
stride
)
>
0
:
s_h
=
stride_h
if
stride_h
else
stride
[
0
]
s_w
=
stride_w
if
stride_w
else
stride
[
len
(
stride
)
-
1
]
s_h
=
stride_h
if
stride_h
>
0
else
stride
[
0
]
s_w
=
stride_w
if
stride_w
>
0
else
stride
[
len
(
stride
)
-
1
]
elif
stride_h
>
0
or
stride_w
>
0
:
s_h
=
stride_h
s_w
=
stride_w
[
p_h
,
p_w
]
=
[
0
,
0
]
if
isinstance
(
pad
,
numbers
.
Number
):
[
p_h
,
p_w
]
=
[
pad
]
*
2
elif
len
(
pad
)
>
0
:
p_h
=
pad_h
if
pad_h
else
pad
[
0
]
p_w
=
pad_w
if
pad_w
else
pad
[
len
(
pad
)
-
1
]
p_h
=
pad_h
if
pad_h
>
0
else
pad
[
0
]
p_w
=
pad_w
if
pad_w
>
0
else
pad
[
len
(
pad
)
-
1
]
elif
pad_h
>
0
or
pad_w
>
0
:
p_h
=
pad_h
p_w
=
pad_w
dila_len
=
len
(
dilation
)
dila_h
=
1
dila_w
=
1
...
...
@@ -74,20 +83,29 @@ def convolutiondepthwise_layer(inputs,
if
isinstance
(
kernel_size
,
numbers
.
Number
):
[
k_h
,
k_w
]
=
[
kernel_size
]
*
2
elif
len
(
kernel_size
)
>
0
:
k_h
=
kernel_h
if
kernel_h
else
kernel_size
[
0
]
k_w
=
kernel_w
if
kernel_w
else
kernel_size
[
len
(
kernel_size
)
-
1
]
k_h
=
kernel_h
if
kernel_h
>
0
else
kernel_size
[
0
]
k_w
=
kernel_w
if
kernel_w
>
0
else
kernel_size
[
len
(
kernel_size
)
-
1
]
elif
kernel_h
>
0
or
kernel_w
>
0
:
k_h
=
kernel_h
k_w
=
kernel_w
[
s_h
,
s_w
]
=
[
1
,
1
]
if
isinstance
(
stride
,
numbers
.
Number
):
[
s_h
,
s_w
]
=
[
stride
]
*
2
elif
len
(
stride
)
>
0
:
s_h
=
stride_h
if
stride_h
else
stride
[
0
]
s_w
=
stride_w
if
stride_w
else
stride
[
len
(
stride
)
-
1
]
s_h
=
stride_h
if
stride_h
>
0
else
stride
[
0
]
s_w
=
stride_w
if
stride_w
>
0
else
stride
[
len
(
stride
)
-
1
]
elif
stride_h
>
0
or
stride_w
>
0
:
s_h
=
stride_h
s_w
=
stride_w
[
p_h
,
p_w
]
=
[
0
,
0
]
if
isinstance
(
pad
,
numbers
.
Number
):
[
p_h
,
p_w
]
=
[
pad
]
*
2
elif
len
(
pad
)
>
0
:
p_h
=
pad_h
if
pad_h
else
pad
[
0
]
p_w
=
pad_w
if
pad_w
else
pad
[
len
(
pad
)
-
1
]
p_h
=
pad_h
if
pad_h
>
0
else
pad
[
0
]
p_w
=
pad_w
if
pad_w
>
0
else
pad
[
len
(
pad
)
-
1
]
elif
pad_h
>
0
or
pad_w
>
0
:
p_h
=
pad_h
p_w
=
pad_w
input
=
inputs
[
0
]
dila_len
=
len
(
dilation
)
dila_h
=
1
...
...
x2paddle/op_mapper/caffe_op_mapper.py
浏览文件 @
aa58ad3d
...
...
@@ -39,6 +39,8 @@ class CaffeOpMapper(OpMapper):
print
(
"Total nodes: {}"
.
format
(
len
(
self
.
graph
.
topo_sort
)))
for
node_name
in
self
.
graph
.
topo_sort
:
node
=
self
.
graph
.
get_node
(
node_name
)
if
node
.
layer_type
==
'DepthwiseConvolution'
:
node
.
layer_type
=
'ConvolutionDepthwise'
op
=
node
.
layer_type
if
hasattr
(
self
,
op
):
self
.
set_node_shape
(
node
)
...
...
@@ -133,23 +135,32 @@ class CaffeOpMapper(OpMapper):
if
isinstance
(
params
.
kernel_size
,
numbers
.
Number
):
[
k_h
,
k_w
]
=
[
params
.
kernel_size
]
*
2
elif
len
(
params
.
kernel_size
)
>
0
:
k_h
=
params
.
kernel_h
if
params
.
kernel_h
else
params
.
kernel_size
[
0
]
k_w
=
params
.
kernel_w
if
params
.
kernel_w
else
params
.
kernel_size
[
k_h
=
params
.
kernel_h
if
params
.
kernel_h
>
0
else
params
.
kernel_size
[
0
]
k_w
=
params
.
kernel_w
if
params
.
kernel_w
>
0
else
params
.
kernel_size
[
len
(
params
.
kernel_size
)
-
1
]
elif
params
.
kernel_h
>
0
or
params
.
kernel_w
>
0
:
k_h
=
params
.
kernel_h
k_w
=
params
.
kernel_w
[
s_h
,
s_w
]
=
[
1
,
1
]
if
isinstance
(
params
.
stride
,
numbers
.
Number
):
[
s_h
,
s_w
]
=
[
params
.
stride
]
*
2
elif
len
(
params
.
stride
)
>
0
:
s_h
=
params
.
stride_h
if
params
.
stride_h
else
params
.
stride
[
0
]
s_w
=
params
.
stride_w
if
params
.
stride_w
else
params
.
stride
[
s_h
=
params
.
stride_h
if
params
.
stride_h
>
0
else
params
.
stride
[
0
]
s_w
=
params
.
stride_w
if
params
.
stride_w
>
0
else
params
.
stride
[
len
(
params
.
stride
)
-
1
]
elif
params
.
stride_h
>
0
or
params
.
stride_w
>
0
:
s_h
=
params
.
stride_h
s_w
=
params
.
stride_w
[
p_h
,
p_w
]
=
[
0
,
0
]
if
isinstance
(
params
.
pad
,
numbers
.
Number
):
[
p_h
,
p_w
]
=
[
params
.
pad
]
*
2
elif
len
(
params
.
pad
)
>
0
:
p_h
=
params
.
pad_h
if
params
.
pad_h
else
params
.
pad
[
0
]
p_w
=
params
.
pad_w
if
params
.
pad_w
else
params
.
pad
[
len
(
params
.
pad
)
-
p_h
=
params
.
pad_h
if
params
.
pad_h
>
0
else
params
.
pad
[
0
]
p_w
=
params
.
pad_w
if
params
.
pad_w
>
0
else
params
.
pad
[
len
(
params
.
pad
)
-
1
]
elif
params
.
pad_h
>
0
or
params
.
pad_w
>
0
:
p_h
=
params
.
pad_h
p_w
=
params
.
pad_w
dila_h
=
dila_w
=
1
group
=
1
c_o
=
1
...
...
@@ -209,15 +220,22 @@ class CaffeOpMapper(OpMapper):
def
Convolution
(
self
,
node
):
data
=
node
.
data
assert
data
is
not
None
,
'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'
.
format
(
node
.
layer_name
,
node
.
layer_type
)
params
=
node
.
layer
.
convolution_param
channel
,
kernel
,
stride
,
pad
,
dilation
,
group
=
self
.
get_kernel_parameters
(
node
.
layer_type
,
params
)
if
data
is
None
:
data
=
[]
print
(
'The parameter of {} (type is {}) is not set. So we set the parameters as 0'
.
format
(
node
.
layer_name
,
node
.
layer_type
))
input_c
=
node
.
input_shape
[
0
][
1
]
output_c
=
channel
data
.
append
(
np
.
zeros
([
output_c
,
input_c
,
kernel
[
0
],
kernel
[
1
]]).
astype
(
'float32'
))
data
.
append
(
np
.
zeros
([
output_c
,])).
astype
(
'float32'
)
else
:
data
=
self
.
adjust_parameters
(
node
)
self
.
weights
[
node
.
layer_name
+
'_weights'
]
=
data
[
0
]
if
len
(
data
)
==
2
:
self
.
weights
[
node
.
layer_name
+
'_bias'
]
=
data
[
1
]
params
=
node
.
layer
.
convolution_param
channel
,
kernel
,
stride
,
pad
,
dilation
,
group
=
self
.
get_kernel_parameters
(
node
.
layer_type
,
params
)
assert
len
(
node
.
inputs
)
==
1
,
'The count of Convolution node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
...
...
@@ -249,15 +267,22 @@ class CaffeOpMapper(OpMapper):
def
Deconvolution
(
self
,
node
):
data
=
node
.
data
assert
data
is
not
None
,
'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'
.
format
(
node
.
layer_name
,
node
.
layer_type
)
params
=
node
.
layer
.
convolution_param
channel
,
kernel
,
stride
,
pad
,
dilation
,
group
=
self
.
get_kernel_parameters
(
node
.
layer_type
,
params
)
if
data
is
None
:
data
=
[]
print
(
'The parameter of {} (type is {}) is not set. So we set the parameters as 0'
.
format
(
node
.
layer_name
,
node
.
layer_type
))
input_c
=
node
.
input_shape
[
0
][
1
]
output_c
=
channel
data
.
append
(
np
.
zeros
([
output_c
,
input_c
,
kernel
[
0
],
kernel
[
1
]]).
astype
(
'float32'
))
data
.
append
(
np
.
zeros
([
output_c
,]).
astype
(
'float32'
))
else
:
data
=
self
.
adjust_parameters
(
node
)
self
.
weights
[
node
.
layer_name
+
'_weights'
]
=
data
[
0
]
if
len
(
data
)
==
2
:
self
.
weights
[
node
.
layer_name
+
'_bias'
]
=
data
[
1
]
params
=
node
.
layer
.
convolution_param
channel
,
kernel
,
stride
,
pad
,
dilation
,
group
=
self
.
get_kernel_parameters
(
node
.
layer_type
,
params
)
assert
len
(
node
.
inputs
)
==
1
,
'The count of Deconvolution node
\'
s input is not 1.'
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
...
...
@@ -342,8 +367,16 @@ class CaffeOpMapper(OpMapper):
def
InnerProduct
(
self
,
node
):
data
=
node
.
data
assert
data
is
not
None
,
'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'
.
format
(
node
.
layer_name
,
node
.
layer_type
)
params
=
node
.
layer
.
inner_product_param
if
data
is
None
:
print
(
'The parameter of {} (type is {}) is not set. So we set the parameters as 0.'
.
format
(
node
.
layer_name
,
node
.
layer_type
))
input_c
=
node
.
input_shape
[
0
][
1
]
output_c
=
params
.
num_output
data
=
[]
data
.
append
(
np
.
zeros
([
input_c
,
output_c
]).
astype
(
'float32'
).
astype
(
'float32'
))
data
.
append
(
np
.
zeros
([
output_c
]).
astype
(
'float32'
).
astype
(
'float32'
))
else
:
data
=
self
.
adjust_parameters
(
node
)
# Reshape the parameters to Paddle's ordering
transpose_order
=
(
1
,
0
)
...
...
@@ -359,7 +392,7 @@ class CaffeOpMapper(OpMapper):
self
.
weights
[
node
.
layer_name
+
'_bias'
]
=
data
[
1
]
assert
len
(
node
.
inputs
)
==
1
,
'The count of InnerProduct node
\'
s input is not 1.'
params
=
node
.
layer
.
inner_product_param
#
params = node.layer.inner_product_param
assert
params
.
axis
==
1
assert
params
.
bias_term
==
True
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
...
...
@@ -590,7 +623,14 @@ class CaffeOpMapper(OpMapper):
eps
=
params
.
eps
else
:
eps
=
1e-5
assert
len
(
node
.
data
)
==
3
if
node
.
data
is
None
or
len
(
node
.
data
)
!=
3
:
print
(
'The parameter of {} (type is {}) is not set. So we set the parameters as 0'
.
format
(
node
.
layer_name
,
node
.
layer_type
))
input_c
=
node
.
input_shape
[
0
][
1
]
mean
=
np
.
zeros
([
input_c
,]).
astype
(
'float32'
)
variance
=
np
.
zeros
([
input_c
,]).
astype
(
'float32'
)
scale
=
0
else
:
node
.
data
=
[
np
.
squeeze
(
i
)
for
i
in
node
.
data
]
mean
,
variance
,
scale
=
node
.
data
# Prescale the stats
...
...
@@ -614,7 +654,13 @@ class CaffeOpMapper(OpMapper):
param_attr
=
attr
)
def
Scale
(
self
,
node
):
if
node
.
data
is
None
:
print
(
'The parameter of {} (type is {}) is not set. So we set the parameters as 0'
.
format
(
node
.
layer_name
,
node
.
layer_type
))
input_c
=
node
.
input_shape
[
0
][
1
]
self
.
weights
[
node
.
layer_name
+
'_scale'
]
=
np
.
zeros
([
input_c
,]).
astype
(
'float32'
)
self
.
weights
[
node
.
layer_name
+
'_offset'
]
=
np
.
zeros
([
input_c
,]).
astype
(
'float32'
)
else
:
self
.
weights
[
node
.
layer_name
+
'_scale'
]
=
np
.
squeeze
(
node
.
data
[
0
])
self
.
weights
[
node
.
layer_name
+
'_offset'
]
=
np
.
squeeze
(
node
.
data
[
1
])
params
=
node
.
layer
.
scale_param
...
...
x2paddle/op_mapper/caffe_shape.py
浏览文件 @
aa58ad3d
...
...
@@ -22,22 +22,31 @@ def get_kernel_parameters(params):
if
isinstance
(
params
.
kernel_size
,
numbers
.
Number
):
[
k_h
,
k_w
]
=
[
params
.
kernel_size
]
*
2
elif
len
(
params
.
kernel_size
)
>
0
:
k_h
=
params
.
kernel_h
if
params
.
kernel_h
else
params
.
kernel_size
[
0
]
k_w
=
params
.
kernel_w
if
params
.
kernel_w
else
params
.
kernel_size
[
k_h
=
params
.
kernel_h
if
params
.
kernel_h
>
0
else
params
.
kernel_size
[
0
]
k_w
=
params
.
kernel_w
if
params
.
kernel_w
>
0
else
params
.
kernel_size
[
len
(
params
.
kernel_size
)
-
1
]
elif
params
.
kernel_h
>
0
or
params
.
kernel_w
>
0
:
k_h
=
params
.
kernel_h
k_w
=
params
.
kernel_w
[
s_h
,
s_w
]
=
[
1
,
1
]
if
isinstance
(
params
.
stride
,
numbers
.
Number
):
[
s_h
,
s_w
]
=
[
params
.
stride
]
*
2
elif
len
(
params
.
stride
)
>
0
:
s_h
=
params
.
stride_h
if
params
.
stride_h
else
params
.
stride
[
0
]
s_w
=
params
.
stride_w
if
params
.
stride_w
else
params
.
stride
[
s_h
=
params
.
stride_h
if
params
.
stride_h
>
0
else
params
.
stride
[
0
]
s_w
=
params
.
stride_w
if
params
.
stride_w
>
0
else
params
.
stride
[
len
(
params
.
stride
)
-
1
]
elif
params
.
stride_h
>
0
or
params
.
stride_w
>
0
:
s_h
=
params
.
stride_h
s_w
=
params
.
stride_w
[
p_h
,
p_w
]
=
[
0
,
0
]
if
isinstance
(
params
.
pad
,
numbers
.
Number
):
[
p_h
,
p_w
]
=
[
params
.
pad
]
*
2
elif
len
(
params
.
pad
)
>
0
:
p_h
=
params
.
pad_h
if
params
.
pad_h
else
params
.
pad
[
0
]
p_w
=
params
.
pad_w
if
params
.
pad_w
else
params
.
pad
[
len
(
params
.
pad
)
-
1
]
p_h
=
params
.
pad_h
if
params
.
pad_h
>
0
else
params
.
pad
[
0
]
p_w
=
params
.
pad_w
if
params
.
pad_w
>
0
else
params
.
pad
[
len
(
params
.
pad
)
-
1
]
elif
params
.
pad_h
>
0
or
params
.
pad_w
>
0
:
p_h
=
params
.
pad_h
p_w
=
params
.
pad_w
dila_h
=
dila_w
=
1
if
hasattr
(
params
,
'dilation'
):
dila_len
=
len
(
params
.
dilation
)
...
...
x2paddle_model_zoo.md
浏览文件 @
aa58ad3d
...
...
@@ -31,9 +31,19 @@
| SqueezeNet |
[
code
](
https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1
)
|
| MobileNet_V1 |
[
code
](
https://github.com/shicai/MobileNet-Caffe
)
|
| MobileNet_V2 |
[
code
](
https://github.com/shicai/MobileNet-Caffe
)
|
| ShuffleNet |
[
code
](
https://github.com/miaow1988/ShuffleNet_V2_pytorch_caffe/releases/tag/v0.1.0
)
|
| ShuffleNet
_v2
|
[
code
](
https://github.com/miaow1988/ShuffleNet_V2_pytorch_caffe/releases/tag/v0.1.0
)
|
| mNASNet |
[
code
](
https://github.com/LiJianfei06/MnasNet-caffe
)
|
| MTCNN |
[
code
](
https://github.com/kpzhang93/MTCNN_face_detection_alignment/tree/master/code/codes/MTCNNv1/model
)
|
| Mobilenet_SSD |
[
code
](
https://github.com/chuanqi305/MobileNet-SSD
)
|
| ResNet18 |
[
code
](
https://github.com/HolmesShuan/ResNet-18-Caffemodel-on-ImageNet/blob/master/deploy.prototxt
)
|
| ResNet50 |
[
code
](
https://github.com/soeaver/caffe-model/blob/master/cls/resnet/deploy_resnet50.prototxt
)
|
| Unet |
[
code
](
https://github.com/jolibrain/deepdetect/blob/master/templates/caffe/unet/deploy.prototxt
)
|
| VGGNet |
[
code
](
https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-vgg_ilsvrc_16_layers_deploy-prototxt
)
|
## ONNX
**注:**
部分模型来源于PyTorch,PyTorch的转换可参考
[
pytorch_to_onnx.md
](
pytorch_to_onnx.md
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录