未验证 提交 aa58ad3d 编写于 作者: J Jason 提交者: GitHub

Merge pull request #3 from PaddlePaddle/develop

dev
......@@ -5,10 +5,9 @@ A:该提示信息表示无法从TensorFlow的pb模型中获取到输入tensor(
**Q2. TensorFlow模型转换失败怎么解决?**
A: 如果并非是由缺少OP导致,那可能是由于TensorFlow模型转换时(NHWC->NCHW格式转换导致),在这种情况下,可以采用关闭格式优化,同时固化输入大小的方式,继续尝试转换,见如下命令,转换过程中,根据提示,输入相应tensor的固化shape大小
A: 如果并非是由缺少OP导致,那可能是由于TensorFlow模型转换时(NHWC->NCHW格式转换导致),在这种情况下,采用如下方式进行转换,同时固化输入大小的方式,继续尝试转换,见如下命令,转换过程中,根据提示,输入相应tensor的固化shape大小
```
x2paddle -f tensorflow -m tf.pb -s pd-model --without_data_format_optimization --define_input_shape
```
> 1. 目前Tensorflow的CV模型大部分均为`NHWC`的输入格式,而Paddle的默认输入格式为`NCHW`,因此X2Paddle在转换过程中,会对如`axis`, `shape`等参数进行转换,适应Paddle的NCHW格式。但在这种情况下,可能会由于TensorFlow模型太复杂,导致出错。
> 2. X2Paddle默认情况,TensorFlow模型转换后得到的Paddle模型为`NCHW`的输入格式。但在指定`--withou_data_format_optimization`后,转换后的Paddle模型输入格式也同样为`NHWC`。
> 1. 目前Tensorflow的CV模型大部分均为`NHWC`的输入格式,而Paddle的默认输入格式为`NCHW`,因此X2Paddle在转换过程中,会对如`axis`, `shape`等参数进行转换,适应Paddle的NCHW格式。但在这种情况下,可能会由于TensorFlow模型太复杂,导致出错。 指定`--without_data_format_optimization`后,会停止对`axis`,`shape`等参数的优化(这可能会带来一定数量的transpose操作)
......@@ -14,7 +14,7 @@ paddlepaddle >= 1.5.0
**按需安装以下依赖**
tensorflow : tensorflow == 1.14.0
caffe : caffe == 1.0.0
caffe :
onnx : onnx == 1.5.0 pytorch == 1.1.0
## 安装
......@@ -79,6 +79,7 @@ X2Paddle提供了工具解决如下问题,详见[tools/README.md](tools/README
2. [如何导出TensorFlow的pb模型](export_tf_model.md)
3. [X2Paddle测试模型库](x2paddle_model_zoo.md)
4. [PyTorch模型导出为ONNX模型](pytorch_to_onnx.md)
5. [X2Paddle内置的Caffe自定义层](caffe_custom_layer.md)
## 更新历史
2019.08.05
......
目前,代码中已经提供了8个非官方op(不在[官网](http://caffe.berkeleyvision.org/tutorial/layers)上的op)的转换,这些op对应的Caffe实现源码如下:
| op | 该版本实现源码 |
|-------|--------|
| PriorBox | [code](https://github.com/weiliu89/caffe/blob/ssd/src/caffe/layers/prior_box_layer.cpp) |
| DetectionOutput | [code](https://github.com/weiliu89/caffe/blob/ssd/src/caffe/layers/detection_output_layer.cpp) |
| ConvolutionDepthwise | [code](https://github.com/farmingyard/caffe-mobilenet/blob/master/conv_dw_layer.cpp) |
| ShuffleChannel | [code](https://github.com/farmingyard/ShuffleNet/blob/master/shuffle_channel_layer.cpp) |
| Permute | [code](https://github.com/weiliu89/caffe/blob/ssd/src/caffe/layers/permute_layer.cpp) |
| Normalize | [code](https://github.com/weiliu89/caffe/blob/ssd/src/caffe/layers/normalize_layer.cpp) |
| ROIPooling | [code](https://github.com/rbgirshick/caffe-fast-rcnn/blob/0dcd397b29507b8314e252e850518c5695efbb83/src/caffe/layers/roi_pooling_layer.cpp) |
| Axpy | [code](https://github.com/hujie-frank/SENet/blob/master/src/caffe/layers/axpy_layer.cpp) |
......@@ -124,7 +124,10 @@ def caffe2paddle(proto, weight, save_dir, caffe_proto):
from x2paddle.decoder.caffe_decoder import CaffeDecoder
from x2paddle.op_mapper.caffe_op_mapper import CaffeOpMapper
from x2paddle.optimizer.caffe_optimizer import CaffeOptimizer
import google.protobuf as gpb
ver_str = gpb.__version__.replace('.', '')
ver_int = int(ver_str[0:2])
assert ver_int >= 36, 'The version of protobuf must be larger than 3.6.0!'
print("Now translating model from caffe to paddle.")
model = CaffeDecoder(proto, weight, caffe_proto)
mapper = CaffeOpMapper(model)
......
......@@ -190,7 +190,6 @@ class CaffeGraph(Graph):
top_layer[out_name] = [layer.name]
else:
top_layer[out_name].append(layer.name)
for layer_name, data in self.params:
if layer_name in self.node_map:
node = self.node_map[layer_name]
......
......@@ -19,20 +19,29 @@ def convolutiondepthwise_shape(input_shape,
if isinstance(kernel_size, numbers.Number):
[k_h, k_w] = [kernel_size] * 2
elif len(kernel_size) > 0:
k_h = kernel_h if kernel_h else kernel_size[0]
k_w = kernel_w if kernel_w else kernel_size[len(kernel_size) - 1]
k_h = kernel_h if kernel_h > 0 else kernel_size[0]
k_w = kernel_w if kernel_w > 0 else kernel_size[len(kernel_size) - 1]
elif kernel_h > 0 or kernel_w > 0:
k_h = kernel_h
k_w = kernel_w
[s_h, s_w] = [1, 1]
if isinstance(stride, numbers.Number):
[s_h, s_w] = [stride] * 2
elif len(stride) > 0:
s_h = stride_h if stride_h else stride[0]
s_w = stride_w if stride_w else stride[len(stride) - 1]
s_h = stride_h if stride_h > 0 else stride[0]
s_w = stride_w if stride_w > 0 else stride[len(stride) - 1]
elif stride_h > 0 or stride_w > 0:
s_h = stride_h
s_w = stride_w
[p_h, p_w] = [0, 0]
if isinstance(pad, numbers.Number):
[p_h, p_w] = [pad] * 2
elif len(pad) > 0:
p_h = pad_h if pad_h else pad[0]
p_w = pad_w if pad_w else pad[len(pad) - 1]
p_h = pad_h if pad_h > 0 else pad[0]
p_w = pad_w if pad_w > 0 else pad[len(pad) - 1]
elif pad_h > 0 or pad_w > 0:
p_h = pad_h
p_w = pad_w
dila_len = len(dilation)
dila_h = 1
dila_w = 1
......@@ -74,20 +83,29 @@ def convolutiondepthwise_layer(inputs,
if isinstance(kernel_size, numbers.Number):
[k_h, k_w] = [kernel_size] * 2
elif len(kernel_size) > 0:
k_h = kernel_h if kernel_h else kernel_size[0]
k_w = kernel_w if kernel_w else kernel_size[len(kernel_size) - 1]
k_h = kernel_h if kernel_h > 0 else kernel_size[0]
k_w = kernel_w if kernel_w > 0 else kernel_size[len(kernel_size) - 1]
elif kernel_h > 0 or kernel_w > 0:
k_h = kernel_h
k_w = kernel_w
[s_h, s_w] = [1, 1]
if isinstance(stride, numbers.Number):
[s_h, s_w] = [stride] * 2
elif len(stride) > 0:
s_h = stride_h if stride_h else stride[0]
s_w = stride_w if stride_w else stride[len(stride) - 1]
s_h = stride_h if stride_h > 0 else stride[0]
s_w = stride_w if stride_w > 0 else stride[len(stride) - 1]
elif stride_h > 0 or stride_w > 0:
s_h = stride_h
s_w = stride_w
[p_h, p_w] = [0, 0]
if isinstance(pad, numbers.Number):
[p_h, p_w] = [pad] * 2
elif len(pad) > 0:
p_h = pad_h if pad_h else pad[0]
p_w = pad_w if pad_w else pad[len(pad) - 1]
p_h = pad_h if pad_h > 0 else pad[0]
p_w = pad_w if pad_w > 0 else pad[len(pad) - 1]
elif pad_h > 0 or pad_w > 0:
p_h = pad_h
p_w = pad_w
input = inputs[0]
dila_len = len(dilation)
dila_h = 1
......
......@@ -39,6 +39,8 @@ class CaffeOpMapper(OpMapper):
print("Total nodes: {}".format(len(self.graph.topo_sort)))
for node_name in self.graph.topo_sort:
node = self.graph.get_node(node_name)
if node.layer_type == 'DepthwiseConvolution':
node.layer_type = 'ConvolutionDepthwise'
op = node.layer_type
if hasattr(self, op):
self.set_node_shape(node)
......@@ -133,23 +135,32 @@ class CaffeOpMapper(OpMapper):
if isinstance(params.kernel_size, numbers.Number):
[k_h, k_w] = [params.kernel_size] * 2
elif len(params.kernel_size) > 0:
k_h = params.kernel_h if params.kernel_h else params.kernel_size[0]
k_w = params.kernel_w if params.kernel_w else params.kernel_size[
k_h = params.kernel_h if params.kernel_h > 0 else params.kernel_size[0]
k_w = params.kernel_w if params.kernel_w > 0 else params.kernel_size[
len(params.kernel_size) - 1]
elif params.kernel_h > 0 or params.kernel_w > 0:
k_h = params.kernel_h
k_w = params.kernel_w
[s_h, s_w] = [1, 1]
if isinstance(params.stride, numbers.Number):
[s_h, s_w] = [params.stride] * 2
elif len(params.stride) > 0:
s_h = params.stride_h if params.stride_h else params.stride[0]
s_w = params.stride_w if params.stride_w else params.stride[
s_h = params.stride_h if params.stride_h > 0 else params.stride[0]
s_w = params.stride_w if params.stride_w > 0 else params.stride[
len(params.stride) - 1]
elif params.stride_h > 0 or params.stride_w > 0:
s_h = params.stride_h
s_w = params.stride_w
[p_h, p_w] = [0, 0]
if isinstance(params.pad, numbers.Number):
[p_h, p_w] = [params.pad] * 2
elif len(params.pad) > 0:
p_h = params.pad_h if params.pad_h else params.pad[0]
p_w = params.pad_w if params.pad_w else params.pad[len(params.pad) -
p_h = params.pad_h if params.pad_h > 0 else params.pad[0]
p_w = params.pad_w if params.pad_w > 0 else params.pad[len(params.pad) -
1]
elif params.pad_h > 0 or params.pad_w > 0:
p_h = params.pad_h
p_w = params.pad_w
dila_h = dila_w = 1
group = 1
c_o = 1
......@@ -209,15 +220,22 @@ class CaffeOpMapper(OpMapper):
def Convolution(self, node):
data = node.data
assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format(
node.layer_name, node.layer_type)
params = node.layer.convolution_param
channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
node.layer_type, params)
if data is None:
data = []
print('The parameter of {} (type is {}) is not set. So we set the parameters as 0'.format(
node.layer_name, node.layer_type))
input_c = node.input_shape[0][1]
output_c = channel
data.append(np.zeros([output_c, input_c, kernel[0], kernel[1]]).astype('float32'))
data.append(np.zeros([output_c,])).astype('float32')
else:
data = self.adjust_parameters(node)
self.weights[node.layer_name + '_weights'] = data[0]
if len(data) == 2:
self.weights[node.layer_name + '_bias'] = data[1]
params = node.layer.convolution_param
channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
node.layer_type, params)
assert len(node.inputs
) == 1, 'The count of Convolution node\'s input is not 1.'
input = self.graph.get_bottom_node(node, idx=0, copy=True)
......@@ -249,15 +267,22 @@ class CaffeOpMapper(OpMapper):
def Deconvolution(self, node):
data = node.data
assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format(
node.layer_name, node.layer_type)
params = node.layer.convolution_param
channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
node.layer_type, params)
if data is None:
data = []
print('The parameter of {} (type is {}) is not set. So we set the parameters as 0'.format(
node.layer_name, node.layer_type))
input_c = node.input_shape[0][1]
output_c = channel
data.append(np.zeros([output_c, input_c, kernel[0], kernel[1]]).astype('float32'))
data.append(np.zeros([output_c,]).astype('float32'))
else:
data = self.adjust_parameters(node)
self.weights[node.layer_name + '_weights'] = data[0]
if len(data) == 2:
self.weights[node.layer_name + '_bias'] = data[1]
params = node.layer.convolution_param
channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
node.layer_type, params)
assert len(node.inputs
) == 1, 'The count of Deconvolution node\'s input is not 1.'
input = self.graph.get_bottom_node(node, idx=0, copy=True)
......@@ -342,8 +367,16 @@ class CaffeOpMapper(OpMapper):
def InnerProduct(self, node):
data = node.data
assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format(
node.layer_name, node.layer_type)
params = node.layer.inner_product_param
if data is None:
print('The parameter of {} (type is {}) is not set. So we set the parameters as 0.'.format(
node.layer_name, node.layer_type))
input_c = node.input_shape[0][1]
output_c = params.num_output
data = []
data.append(np.zeros([input_c, output_c]).astype('float32').astype('float32'))
data.append(np.zeros([output_c]).astype('float32').astype('float32'))
else:
data = self.adjust_parameters(node)
# Reshape the parameters to Paddle's ordering
transpose_order = (1, 0)
......@@ -359,7 +392,7 @@ class CaffeOpMapper(OpMapper):
self.weights[node.layer_name + '_bias'] = data[1]
assert len(node.inputs
) == 1, 'The count of InnerProduct node\'s input is not 1.'
params = node.layer.inner_product_param
#params = node.layer.inner_product_param
assert params.axis == 1
assert params.bias_term == True
input = self.graph.get_bottom_node(node, idx=0, copy=True)
......@@ -590,7 +623,14 @@ class CaffeOpMapper(OpMapper):
eps = params.eps
else:
eps = 1e-5
assert len(node.data) == 3
if node.data is None or len(node.data) != 3:
print('The parameter of {} (type is {}) is not set. So we set the parameters as 0'.format(
node.layer_name, node.layer_type))
input_c = node.input_shape[0][1]
mean = np.zeros([input_c,]).astype('float32')
variance = np.zeros([input_c,]).astype('float32')
scale = 0
else:
node.data = [np.squeeze(i) for i in node.data]
mean, variance, scale = node.data
# Prescale the stats
......@@ -614,7 +654,13 @@ class CaffeOpMapper(OpMapper):
param_attr=attr)
def Scale(self, node):
if node.data is None:
print('The parameter of {} (type is {}) is not set. So we set the parameters as 0'.format(
node.layer_name, node.layer_type))
input_c = node.input_shape[0][1]
self.weights[node.layer_name + '_scale'] = np.zeros([input_c,]).astype('float32')
self.weights[node.layer_name + '_offset'] = np.zeros([input_c,]).astype('float32')
else:
self.weights[node.layer_name + '_scale'] = np.squeeze(node.data[0])
self.weights[node.layer_name + '_offset'] = np.squeeze(node.data[1])
params = node.layer.scale_param
......
......@@ -22,22 +22,31 @@ def get_kernel_parameters(params):
if isinstance(params.kernel_size, numbers.Number):
[k_h, k_w] = [params.kernel_size] * 2
elif len(params.kernel_size) > 0:
k_h = params.kernel_h if params.kernel_h else params.kernel_size[0]
k_w = params.kernel_w if params.kernel_w else params.kernel_size[
k_h = params.kernel_h if params.kernel_h > 0 else params.kernel_size[0]
k_w = params.kernel_w if params.kernel_w > 0 else params.kernel_size[
len(params.kernel_size) - 1]
elif params.kernel_h > 0 or params.kernel_w > 0:
k_h = params.kernel_h
k_w = params.kernel_w
[s_h, s_w] = [1, 1]
if isinstance(params.stride, numbers.Number):
[s_h, s_w] = [params.stride] * 2
elif len(params.stride) > 0:
s_h = params.stride_h if params.stride_h else params.stride[0]
s_w = params.stride_w if params.stride_w else params.stride[
s_h = params.stride_h if params.stride_h > 0 else params.stride[0]
s_w = params.stride_w if params.stride_w > 0 else params.stride[
len(params.stride) - 1]
elif params.stride_h > 0 or params.stride_w > 0:
s_h = params.stride_h
s_w = params.stride_w
[p_h, p_w] = [0, 0]
if isinstance(params.pad, numbers.Number):
[p_h, p_w] = [params.pad] * 2
elif len(params.pad) > 0:
p_h = params.pad_h if params.pad_h else params.pad[0]
p_w = params.pad_w if params.pad_w else params.pad[len(params.pad) - 1]
p_h = params.pad_h if params.pad_h > 0 else params.pad[0]
p_w = params.pad_w if params.pad_w > 0 else params.pad[len(params.pad) - 1]
elif params.pad_h > 0 or params.pad_w > 0:
p_h = params.pad_h
p_w = params.pad_w
dila_h = dila_w = 1
if hasattr(params, 'dilation'):
dila_len = len(params.dilation)
......
......@@ -31,9 +31,19 @@
| SqueezeNet | [code](https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1) |
| MobileNet_V1 | [code](https://github.com/shicai/MobileNet-Caffe) |
| MobileNet_V2 | [code](https://github.com/shicai/MobileNet-Caffe) |
| ShuffleNet | [code](https://github.com/miaow1988/ShuffleNet_V2_pytorch_caffe/releases/tag/v0.1.0) |
| ShuffleNet_v2 | [code](https://github.com/miaow1988/ShuffleNet_V2_pytorch_caffe/releases/tag/v0.1.0) |
| mNASNet | [code](https://github.com/LiJianfei06/MnasNet-caffe) |
| MTCNN | [code](https://github.com/kpzhang93/MTCNN_face_detection_alignment/tree/master/code/codes/MTCNNv1/model) |
| Mobilenet_SSD | [code](https://github.com/chuanqi305/MobileNet-SSD) |
| ResNet18 | [code](https://github.com/HolmesShuan/ResNet-18-Caffemodel-on-ImageNet/blob/master/deploy.prototxt) |
| ResNet50 | [code](https://github.com/soeaver/caffe-model/blob/master/cls/resnet/deploy_resnet50.prototxt) |
| Unet | [code](https://github.com/jolibrain/deepdetect/blob/master/templates/caffe/unet/deploy.prototxt) |
| VGGNet | [code](https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-vgg_ilsvrc_16_layers_deploy-prototxt) |
## ONNX
**注:** 部分模型来源于PyTorch,PyTorch的转换可参考[pytorch_to_onnx.md](pytorch_to_onnx.md)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册