Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
a6759829
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a6759829
编写于
8月 11, 2020
作者:
C
Channingss
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'paddle/develop' into prior_box
上级
d93dc40c
78c614b7
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
245 addition
and
278 deletion
+245
-278
op_list.md
op_list.md
+19
-15
x2paddle/decoder/onnx_shape_inference.py
x2paddle/decoder/onnx_shape_inference.py
+2
-3
x2paddle/op_mapper/caffe_custom_layer/normalize.py
x2paddle/op_mapper/caffe_custom_layer/normalize.py
+1
-1
x2paddle/op_mapper/onnx2paddle/opset9/opset.py
x2paddle/op_mapper/onnx2paddle/opset9/opset.py
+187
-247
x2paddle/op_mapper/paddle2onnx/opset9/opset.py
x2paddle/op_mapper/paddle2onnx/opset9/opset.py
+8
-0
x2paddle/op_mapper/tf_op_mapper_nhwc.py
x2paddle/op_mapper/tf_op_mapper_nhwc.py
+16
-6
x2paddle/optimizer/tf_optimizer.py
x2paddle/optimizer/tf_optimizer.py
+4
-1
x2paddle_model_zoo.md
x2paddle_model_zoo.md
+8
-5
未找到文件。
op_list.md
浏览文件 @
a6759829
# X2Paddle支持OP列表
# X2Paddle支持OP列表
> 目前X2Paddle支持
5
0+的TensorFlow OP,30+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。
> 目前X2Paddle支持
7
0+的TensorFlow OP,30+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下列表中给出了目前X2Paddle支持的全部OP。
**注:**
目前,部分OP暂未支持,如您在转换过程中出现OP不支持的情况,可自行添加或反馈给我们。欢迎通过
[
ISSUE反馈
](
https://github.com/PaddlePaddle/X2Paddle/issues/new
)
的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
**注:**
目前,部分OP暂未支持,如您在转换过程中出现OP不支持的情况,可自行添加或反馈给我们。欢迎通过
[
ISSUE反馈
](
https://github.com/PaddlePaddle/X2Paddle/issues/new
)
的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
...
@@ -7,20 +7,24 @@
...
@@ -7,20 +7,24 @@
| 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
| 序号 | OP | 序号 | OP | 序号 | OP | 序号 | OP |
|------|------|------|------|------|------|------|------|
|------|------|------|------|------|------|------|------|
| 1 | Relu | 2 | Relu6 | 3 | Shape | 4 | Abs |
| 1 | Relu | 2 | Relu6 | 3 | Shape | 4 | Abs |
| 5 | Sigmoid | 6 | Exp | 7 | Rsqrt | 8 | swish_f32 |
| 5 | Sigmoid | 6 | Exp | 7 | Rsqrt | 8 | swish_f32 |
| 9 | Tanh | 10 | LeakyRelu | 11 | Add | 12 | RealDiv |
| 9 | Tanh | 10 | LeakyRelu | 11 | Add | 12 | RealDiv |
| 13 | Sub | 14 | Maximum | 15 | Mul | 16 | FloorDiv |
| 13 | Sub | 14 | Maximum | 15 | Mul | 16 | FloorDiv |
| 17 | Placeholder | 18 | Const | 19 | Transpose | 20 | FusedBatchNorm |
| 17 | Placeholder | 18 | Const | 19 | Transpose | 20 | FusedBatchNorm |
| 21 | Conv2D | 22 | BiasAdd | 23 | MaxPool | 24 | DepthwiseConv2dNative |
| 21 | Conv2D | 22 | BiasAdd | 23 | MaxPool | 24 | DepthwiseConv2dNative |
| 25 | Reshape | 26 | AvgPool | 27 | SplitV | 28 | SquaredDifference |
| 25 | Reshape | 26 | AvgPool | 27 | SplitV | 28 | SquaredDifference |
| 29 | Tile | 30 | Pack | 31 | Pad | 32 | ResizeBilinear |
| 29 | Tile | 30 | Pack | 31 | Pad | 32 | ResizeBilinear |
| 33 | Mean | 34 | MatMul | 35 | ArgMax | 36 | StridedSlice |
| 33 | Mean | 34 | MatMul | 35 | ArgMax | 36 | StridedSlice |
| 37 | Slice | 38 | Sum | 39 | Max | 40 | Conv2DBackpropInput |
| 37 | Slice | 38 | Sum | 39 | Max | 40 | Conv2DBackpropInput |
| 41 | Cast | 42 | Split | 43 | Squeeze | 44 | ResizeNearestNeighbor |
| 41 | Cast | 42 | Split | 43 | Squeeze | 44 | ResizeNearestNeighbor |
| 45 | Softmax | 46 | Range | 47 | ConcatV2 | 48 | MirrorPad |
| 45 | Softmax | 46 | Range | 47 | ConcatV2 | 48 | MirrorPad |
| 49 | Identity | 50 | GreaterEqual | 51 | StopGradient | 52 | Minimum |
| 49 | Identity | 50 | GreaterEqual | 51 | StopGradient | 52 | Minimum |
| 53 | RadnomUniform | 54 | Fill | 55 | Floor | 56 | DepthToSpace |
| 53 | RadnomUniform | 54 | Fill | 55 | Floor | 56 | DepthToSpace |
| 57 | Sqrt | 58 | Softplus | 59 | Erf | 60 | AddV2 |
| 61 | LessEqual | 62 | BatchMatMul | 63 | BatchMatMulV2 | 64 | ExpandDims |
| 65 | BatchToSpaceND | 66 | SpaceToBatchND | 67 | OneHot | 68 | Pow |
| 69 | All | 70 | GatherV2 | 71 | IteratorV2 | | |
## Caffe
## Caffe
...
...
x2paddle/decoder/onnx_shape_inference.py
浏览文件 @
a6759829
...
@@ -267,9 +267,8 @@ class SymbolicShapeInference:
...
@@ -267,9 +267,8 @@ class SymbolicShapeInference:
if
pending_nodes
and
self
.
verbose_
>
0
:
if
pending_nodes
and
self
.
verbose_
>
0
:
print
(
'SymbolicShapeInference: orphaned nodes discarded: '
)
print
(
'SymbolicShapeInference: orphaned nodes discarded: '
)
print
(
print
(
'
\n
'
.
join
(
*
[
n
.
op_type
+
': '
+
n
.
output
[
0
]
for
n
in
pending_nodes
],
[
n
.
op_type
+
': '
+
n
.
output
[
0
]
for
n
in
pending_nodes
]))
sep
=
'
\n
'
)
if
input_shapes
is
not
None
:
if
input_shapes
is
not
None
:
for
input_name
,
shape
in
input_shapes
.
items
():
for
input_name
,
shape
in
input_shapes
.
items
():
for
idx
in
range
(
len
(
self
.
out_mp_
.
graph
.
input
)):
for
idx
in
range
(
len
(
self
.
out_mp_
.
graph
.
input
)):
...
...
x2paddle/op_mapper/caffe_custom_layer/normalize.py
浏览文件 @
a6759829
...
@@ -17,7 +17,7 @@ def normalize_layer(inputs,
...
@@ -17,7 +17,7 @@ def normalize_layer(inputs,
scale_param
=
fluid
.
layers
.
create_parameter
(
scale_param
=
fluid
.
layers
.
create_parameter
(
shape
=
[
1
]
if
channel_shared
else
[
1
,
1
,
1
,
input_shape
[
0
][
1
]],
shape
=
[
1
]
if
channel_shared
else
[
1
,
1
,
1
,
input_shape
[
0
][
1
]],
dtype
=
input
.
dtype
,
dtype
=
input
.
dtype
,
attr
=
name
+
'_scale'
)
attr
=
fluid
.
ParamAttr
(
name
=
name
+
'_scale'
)
)
scale_param
=
fluid
.
layers
.
reshape
(
x
=
scale_param
,
\
scale_param
=
fluid
.
layers
.
reshape
(
x
=
scale_param
,
\
shape
=
[
1
]
if
channel_shared
else
[
input_shape
[
0
][
1
]])
shape
=
[
1
]
if
channel_shared
else
[
input_shape
[
0
][
1
]])
out
=
fluid
.
layers
.
elementwise_mul
(
out
=
fluid
.
layers
.
elementwise_mul
(
...
...
x2paddle/op_mapper/onnx2paddle/opset9/opset.py
浏览文件 @
a6759829
...
@@ -32,15 +32,33 @@ import shutil
...
@@ -32,15 +32,33 @@ import shutil
_logger
=
_logging
.
getLogger
(
__name__
)
_logger
=
_logging
.
getLogger
(
__name__
)
def
_const_weight_or_none
(
node
):
def
_const_weight_or_none
(
node
,
necessary
=
False
):
if
'Constant'
in
node
.
layer_type
:
if
'Constant'
in
node
.
layer_type
:
return
node
.
value
return
node
.
value
if
isinstance
(
node
,
ONNXGraphDataNode
):
if
isinstance
(
node
,
ONNXGraphDataNode
):
return
node
.
weight
return
node
.
weight
if
necessary
:
assert
'{} should be an initializer or Constant operator.'
.
format
(
node
.
layer_name
)
return
None
return
None
def
get_same_padding
(
in_size
,
kernel_size
,
stride
):
def
_is_static_shape
(
shape
):
negtive_dims
=
0
error_dims
=
0
for
dim
in
shape
:
if
dim
<
0
:
negtive_dims
+=
1
if
dim
<
-
1
:
error_dims
+=
1
if
negtive_dims
>
1
:
return
False
if
error_dims
>
0
:
return
False
return
True
def
_get_same_padding
(
in_size
,
kernel_size
,
stride
):
new_size
=
int
(
math
.
ceil
(
in_size
*
1.0
/
stride
))
new_size
=
int
(
math
.
ceil
(
in_size
*
1.0
/
stride
))
pad_size
=
(
new_size
-
1
)
*
stride
+
kernel_size
-
in_size
pad_size
=
(
new_size
-
1
)
*
stride
+
kernel_size
-
in_size
pad0
=
int
(
pad_size
/
2
)
pad0
=
int
(
pad_size
/
2
)
...
@@ -228,42 +246,9 @@ class OpSet9():
...
@@ -228,42 +246,9 @@ class OpSet9():
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_y
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_y_shape
=
val_y
.
out_shapes
[
0
]
inputs
=
{
'x'
:
val_x
,
'y'
:
val_y
}
val_x_shape
=
val_x
.
out_shapes
[
0
]
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
if
len
(
val_x_shape
)
<
len
(
val_y_shape
):
val_x
,
val_y
=
val_y
,
val_x
val_y_shape
,
val_x_shape
=
val_x_shape
,
val_y_shape
str_y_shape
=
','
.
join
(
str
(
e
)
for
e
in
val_y_shape
)
str_x_shape
=
','
.
join
(
str
(
e
)
for
e
in
val_x_shape
)
slice_idx
=
0
if
str_y_shape
not
in
str_x_shape
:
for
dim
in
val_y_shape
:
if
dim
==
1
:
slice_idx
+=
1
else
:
break
attr
=
{
"name"
:
string
(
node
.
layer_name
)}
if
slice_idx
<
len
(
val_y_shape
)
and
slice_idx
>
0
:
val_y_reshaped
=
val_y_shape
[
slice_idx
:]
var_y_reshaped
=
val_y
.
layer_name
+
'_reshaped'
attr_reshaped
=
{
'shape'
:
val_y_reshaped
,
'name'
:
string
(
var_y_reshaped
)
}
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
val_y
,
output
=
var_y_reshaped
,
param_attr
=
attr_reshaped
)
inputs
=
{
'x'
:
val_x
,
'y'
:
var_y_reshaped
}
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
else
:
inputs
=
{
'x'
:
val_x
,
'y'
:
val_y
}
node
.
fluid_code
.
add_layer
(
op_type
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
@
print_mapping_info
def
place_holder
(
self
,
node
):
def
place_holder
(
self
,
node
):
...
@@ -476,8 +461,21 @@ class OpSet9():
...
@@ -476,8 +461,21 @@ class OpSet9():
output
=
node
,
output
=
node
,
param_attr
=
{
'shape'
:
[
1
]})
param_attr
=
{
'shape'
:
[
1
]})
else
:
else
:
node
.
fluid_code
.
add_layer
(
if
str
(
val_x
.
dtype
)
==
'bool'
:
'unsqueeze'
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
val_x_cast
=
val_x
.
layer_name
+
'_cast'
node
.
fluid_code
.
add_layer
(
'cast'
,
inputs
=
val_x
,
output
=
val_x_cast
,
param_attr
=
{
'dtype'
:
string
(
'int64'
)})
node
.
fluid_code
.
add_layer
(
'unsqueeze'
,
inputs
=
val_x_cast
,
output
=
node
,
param_attr
=
attr
)
else
:
node
.
fluid_code
.
add_layer
(
'unsqueeze'
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
@
print_mapping_info
def
Shrink
(
self
,
node
):
def
Shrink
(
self
,
node
):
...
@@ -597,12 +595,35 @@ class OpSet9():
...
@@ -597,12 +595,35 @@ class OpSet9():
#assert len(
#assert len(
# indices_shape) <= 2, "Gather op don't support dim of indice >2 "
# indices_shape) <= 2, "Gather op don't support dim of indice >2 "
if
axis
==
0
and
len
(
indices_shape
)
<=
1
:
if
axis
==
0
and
len
(
indices_shape
)
<=
1
:
node
.
fluid_code
.
add_layer
(
if
len
(
val_x
.
out_shapes
[
0
])
<=
1
:
'gather'
,
node
.
fluid_code
.
add_layer
(
inputs
=
{
'input'
:
val_x
,
'gather'
,
'index'
:
indices
},
inputs
=
{
'input'
:
val_x
,
output
=
node
,
'index'
:
indices
},
param_attr
=
None
)
output
=
node
,
param_attr
=
None
)
elif
len
(
val_x
.
out_shapes
[
0
])
>
1
:
if
len
(
indices_shape
)
==
0
:
gather_
=
node
.
layer_name
+
'_1'
node
.
fluid_code
.
add_layer
(
'gather'
,
inputs
=
{
'input'
:
val_x
,
'index'
:
indices
},
output
=
gather_
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
{
'input'
:
gather_
,
'axes'
:
[
0
]},
output
=
node
,
param_attr
=
None
)
else
:
node
.
fluid_code
.
add_layer
(
'gather'
,
inputs
=
{
'input'
:
val_x
,
'index'
:
indices
},
output
=
node
,
param_attr
=
None
)
elif
axis
>
0
and
len
(
indices_shape
)
<=
1
:
elif
axis
>
0
and
len
(
indices_shape
)
<=
1
:
perm
=
list
(
range
(
len
(
val_x
.
out_shapes
[
0
])))
perm
=
list
(
range
(
len
(
val_x
.
out_shapes
[
0
])))
perm
=
[
axis
]
+
perm
[:
axis
]
+
perm
[
axis
+
1
:]
perm
=
[
axis
]
+
perm
[:
axis
]
+
perm
[
axis
+
1
:]
...
@@ -621,6 +642,13 @@ class OpSet9():
...
@@ -621,6 +642,13 @@ class OpSet9():
param_attr
=
None
)
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
node
.
fluid_code
.
add_layer
(
'transpose'
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr_trans
)
'transpose'
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr_trans
)
if
len
(
indices_shape
)
<
1
:
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
{
'input'
:
node
,
'axes'
:
[
0
]},
output
=
node
,
param_attr
=
None
)
elif
axis
==
0
and
len
(
indices_shape
)
>
1
:
elif
axis
==
0
and
len
(
indices_shape
)
>
1
:
if
val_x
.
out_shapes
[
0
]
is
not
None
and
isinstance
(
if
val_x
.
out_shapes
[
0
]
is
not
None
and
isinstance
(
val_x
,
ONNXGraphDataNode
):
val_x
,
ONNXGraphDataNode
):
...
@@ -701,6 +729,86 @@ class OpSet9():
...
@@ -701,6 +729,86 @@ class OpSet9():
output
=
node
,
output
=
node
,
param_attr
=
{
'shape'
:
reshaped_shape
})
param_attr
=
{
'shape'
:
reshaped_shape
})
@
print_mapping_info
def
ScatterND
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
indices
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
updates
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
if
len
(
indices
.
out_shapes
[
0
])
==
1
:
node
.
fluid_code
.
add_layer
(
'scatter'
,
inputs
=
{
'input'
:
val_x
,
'index'
:
indices
,
'updates'
:
updates
},
output
=
node
,
param_attr
=
None
)
else
:
input_inner_indices
=
node
.
layer_name
+
'_input_inner_indices'
node
.
fluid_code
.
add_layer
(
'scatter_nd'
,
inputs
=
{
'shape'
:
val_x
.
out_shapes
[
0
],
'index'
:
indices
,
'updates'
:
updates
},
output
=
input_inner_indices
,
param_attr
=
None
)
constant_minus_one
=
node
.
layer_name
+
'_constant_minus_one'
node
.
fluid_code
.
add_layer
(
'fill_constant'
,
inputs
=
None
,
output
=
constant_minus_one
,
param_attr
=
{
'shape'
:
updates
.
out_shapes
[
0
],
'dtype'
:
string
(
updates
.
dtype
),
'value'
:
-
1
})
indices_mask
=
node
.
layer_name
+
'_indices_mask'
node
.
fluid_code
.
add_layer
(
'scatter_nd'
,
inputs
=
{
'shape'
:
val_x
.
out_shapes
[
0
],
'index'
:
indices
,
'updates'
:
constant_minus_one
},
output
=
indices_mask
,
param_attr
=
None
)
constant_1
=
node
.
layer_name
+
'_constant_1'
node
.
fluid_code
.
add_layer
(
'fill_constant'
,
inputs
=
None
,
output
=
constant_1
,
param_attr
=
{
'shape'
:
val_x
.
out_shapes
[
0
],
'dtype'
:
string
(
val_x
.
dtype
),
'value'
:
1
})
input_out_indices_mask
=
node
.
layer_name
+
'_input_out_indices_mask'
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
{
"x"
:
indices_mask
,
"y"
:
constant_1
},
output
=
input_out_indices_mask
,
param_attr
=
None
)
input_out_indices
=
node
.
layer_name
+
'_input_out_indices'
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
{
"x"
:
val_x
,
"y"
:
input_out_indices_mask
},
output
=
input_out_indices
,
param_attr
=
None
)
node
.
fluid_code
.
add_layer
(
"elementwise_add"
,
inputs
=
{
"x"
:
input_inner_indices
,
"y"
:
input_out_indices
},
output
=
node
,
param_attr
=
None
)
@
print_mapping_info
@
print_mapping_info
def
Range
(
self
,
node
):
def
Range
(
self
,
node
):
val_start
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_start
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
...
@@ -724,7 +832,7 @@ class OpSet9():
...
@@ -724,7 +832,7 @@ class OpSet9():
ends
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
ends
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
if
len
(
node
.
inputs
)
>
3
:
if
len
(
node
.
inputs
)
>
3
:
axes
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
axes
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
axes
=
_const_weight_or_none
(
axes
)
axes
=
_const_weight_or_none
(
axes
,
necessary
=
True
)
if
len
(
node
.
inputs
)
>
4
:
if
len
(
node
.
inputs
)
>
4
:
steps
=
self
.
graph
.
get_input_node
(
node
,
idx
=
4
,
copy
=
True
)
steps
=
self
.
graph
.
get_input_node
(
node
,
idx
=
4
,
copy
=
True
)
steps
=
_const_weight_or_none
(
steps
)
steps
=
_const_weight_or_none
(
steps
)
...
@@ -828,6 +936,14 @@ class OpSet9():
...
@@ -828,6 +936,14 @@ class OpSet9():
inputs
=
{
'x'
:
val_x
},
inputs
=
{
'x'
:
val_x
},
output
=
node
,
output
=
node
,
param_attr
=
{
'shape'
:
shape_value
.
tolist
()})
param_attr
=
{
'shape'
:
shape_value
.
tolist
()})
elif
len
(
node
.
out_shapes
[
0
])
>
0
and
_is_static_shape
(
node
.
out_shapes
[
0
]):
node
.
fluid_code
.
add_layer
(
'reshape'
,
inputs
=
{
'x'
:
val_x
,
'shape'
:
node
.
out_shapes
[
0
]},
output
=
node
,
param_attr
=
attr
)
elif
val_shape
.
dtype
==
'int64'
:
elif
val_shape
.
dtype
==
'int64'
:
val_shape_cast
=
val_shape
.
layer_name
+
'_cast'
val_shape_cast
=
val_shape
.
layer_name
+
'_cast'
node
.
fluid_code
.
add_layer
(
node
.
fluid_code
.
add_layer
(
...
@@ -879,6 +995,11 @@ class OpSet9():
...
@@ -879,6 +995,11 @@ class OpSet9():
node
.
fluid_code
.
add_layer
(
node
.
fluid_code
.
add_layer
(
'cast'
,
inputs
=
val_input
,
output
=
node
,
param_attr
=
attr
)
'cast'
,
inputs
=
val_input
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
Not
(
self
,
node
):
val_input
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
node
.
fluid_code
.
add_layer
(
'logical_not'
,
inputs
=
val_input
,
output
=
node
)
@
print_mapping_info
@
print_mapping_info
def
AveragePool
(
self
,
node
):
def
AveragePool
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
...
@@ -897,11 +1018,11 @@ class OpSet9():
...
@@ -897,11 +1018,11 @@ class OpSet9():
if
auto_pad
==
"SAME_UPPER"
or
auto_pad
==
"SAME_LOWER"
:
if
auto_pad
==
"SAME_UPPER"
or
auto_pad
==
"SAME_LOWER"
:
input_shape
=
val_x
.
out_shapes
[
0
]
input_shape
=
val_x
.
out_shapes
[
0
]
pad_h
=
get_same_padding
(
input_shape
[
2
],
kernel_shape
[
0
],
pad_h
=
_
get_same_padding
(
input_shape
[
2
],
kernel_shape
[
0
],
strides
[
0
])
strides
[
0
])
pad_w
=
get_same_padding
(
input_shape
[
3
],
kernel_shape
[
1
],
pad_w
=
_
get_same_padding
(
input_shape
[
3
],
kernel_shape
[
1
],
strides
[
1
])
strides
[
1
])
attr
=
{
"paddings"
:
pad_h
+
pad_w
,
"pad_value"
:
0.0
}
paddings
=
pad_h
+
pad_w
attr
=
{
attr
=
{
"pool_size"
:
kernel_shape
,
"pool_size"
:
kernel_shape
,
...
@@ -1171,7 +1292,6 @@ class OpSet9():
...
@@ -1171,7 +1292,6 @@ class OpSet9():
def
NonZero
(
self
,
node
):
def
NonZero
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_x_dim
=
len
(
val_x
.
out_shapes
[
0
])
val_x_dim
=
len
(
val_x
.
out_shapes
[
0
])
print
(
val_x
.
layer_name
,
val_x
.
out_shapes
[
0
])
if
val_x_dim
==
1
:
if
val_x_dim
==
1
:
node
.
fluid_code
.
add_layer
(
"nonzero"
,
inputs
=
val_x
,
output
=
val_x
)
node
.
fluid_code
.
add_layer
(
"nonzero"
,
inputs
=
val_x
,
output
=
val_x
)
node
.
fluid_code
.
add_layer
(
node
.
fluid_code
.
add_layer
(
...
@@ -1232,11 +1352,11 @@ class OpSet9():
...
@@ -1232,11 +1352,11 @@ class OpSet9():
if
auto_pad
==
"SAME_UPPER"
or
auto_pad
==
"SAME_LOWER"
:
if
auto_pad
==
"SAME_UPPER"
or
auto_pad
==
"SAME_LOWER"
:
input_shape
=
val_x
.
out_shapes
[
0
]
input_shape
=
val_x
.
out_shapes
[
0
]
pad_h
=
get_same_padding
(
input_shape
[
2
],
kernel_shape
[
0
],
pad_h
=
_
get_same_padding
(
input_shape
[
2
],
kernel_shape
[
0
],
strides
[
0
])
strides
[
0
])
pad_w
=
get_same_padding
(
input_shape
[
3
],
kernel_shape
[
1
],
pad_w
=
_
get_same_padding
(
input_shape
[
3
],
kernel_shape
[
1
],
strides
[
1
])
strides
[
1
])
attr
=
{
"paddings"
:
pad_h
+
pad_w
,
"pad_value"
:
0.0
}
paddings
=
pad_h
+
pad_w
attr
=
{
attr
=
{
"pool_size"
:
kernel_shape
,
"pool_size"
:
kernel_shape
,
...
@@ -1293,23 +1413,23 @@ class OpSet9():
...
@@ -1293,23 +1413,23 @@ class OpSet9():
kernel_shape
=
node
.
get_attr
(
'kernel_shape'
)
kernel_shape
=
node
.
get_attr
(
'kernel_shape'
)
convnd
=
len
(
kernel_shape
)
convnd
=
len
(
kernel_shape
)
assert
2
<=
convnd
<=
3
,
'only conv2d and conv3d is supported'
assert
2
<=
convnd
<=
3
,
'only conv2d and conv3d is supported'
num_out_channels
=
val_w
.
out_shapes
[
0
][
0
]
# OI...
num_out_channels
=
val_w
.
out_shapes
[
0
][
0
]
fluid_op
=
'conv{}d'
.
format
(
convnd
)
fluid_op
=
'conv{}d'
.
format
(
convnd
)
num_groups
=
node
.
get_attr
(
'group'
,
1
)
num_groups
=
node
.
get_attr
(
'group'
,
1
)
strides
=
node
.
get_attr
(
'strides'
,
[
1
]
*
convnd
)
# optional
strides
=
node
.
get_attr
(
'strides'
,
[
1
]
*
convnd
)
dilations
=
node
.
get_attr
(
'dilations'
,
[
1
]
*
convnd
)
# optional
dilations
=
node
.
get_attr
(
'dilations'
,
[
1
]
*
convnd
)
pads
=
node
.
get_attr
(
'pads'
,
[
0
]
*
(
convnd
*
2
))
# optional
pads
=
node
.
get_attr
(
'pads'
,
[
0
]
*
(
convnd
*
2
))
input_shape
=
val_x
.
out_shapes
[
0
]
input_shape
=
val_x
.
out_shapes
[
0
]
paddings
,
val_x
=
self
.
_pad_if_asymmetric
(
node
,
pads
,
val_x
)
paddings
,
val_x
=
self
.
_pad_if_asymmetric
(
node
,
pads
,
val_x
)
if
auto_pad
==
"SAME_UPPER"
or
auto_pad
==
"SAME_LOWER"
:
if
auto_pad
==
"SAME_UPPER"
or
auto_pad
==
"SAME_LOWER"
:
pad_h
=
get_same_padding
(
input_shape
[
2
],
kernel_shape
[
0
],
pad_h
=
_
get_same_padding
(
input_shape
[
2
],
kernel_shape
[
0
],
strides
[
0
])
strides
[
0
])
pad_w
=
get_same_padding
(
input_shape
[
3
],
kernel_shape
[
1
],
pad_w
=
_
get_same_padding
(
input_shape
[
3
],
kernel_shape
[
1
],
strides
[
1
])
strides
[
1
])
attr
=
{
"paddings"
:
pad_h
+
pad_w
,
"pad_value"
:
0.0
}
paddings
=
pad_h
+
pad_w
attr
=
{
attr
=
{
"num_filters"
:
num_out_channels
,
"num_filters"
:
num_out_channels
,
...
@@ -1379,183 +1499,3 @@ class OpSet9():
...
@@ -1379,183 +1499,3 @@ class OpSet9():
}
}
node
.
fluid_code
.
add_layer
(
node
.
fluid_code
.
add_layer
(
fluid_op
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
fluid_op
,
inputs
=
val_x
,
output
=
node
,
param_attr
=
attr
)
@
print_mapping_info
def
GRU
(
self
,
node
):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_w
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_r
=
self
.
graph
.
get_input_node
(
node
,
idx
=
2
,
copy
=
True
)
val_b
=
None
val_len
=
None
val_xh
=
None
miss_arg_num
=
0
num_ipt
=
len
(
node
.
layer
.
input
)
if
num_ipt
>
3
and
node
.
layer
.
input
[
3
]
!=
''
:
val_b
=
self
.
graph
.
get_input_node
(
node
,
idx
=
3
,
copy
=
True
)
else
:
miss_arg_num
+=
1
if
num_ipt
>
4
and
node
.
layer
.
input
[
4
]
!=
''
:
val_len
=
self
.
graph
.
get_input_node
(
node
,
idx
=
4
-
miss_arg_num
,
copy
=
True
)
else
:
miss_arg_num
+=
1
if
num_ipt
>
5
and
node
.
layer
.
input
[
5
]
!=
''
:
val_xh
=
self
.
graph
.
get_input_node
(
node
,
idx
=
5
-
miss_arg_num
,
copy
=
True
)
x_shape
=
val_x
.
out_shapes
[
0
]
assert
x_shape
[
1
]
==
1
,
'only X with batch_size = 1 supported'
assert
node
.
get_attr
(
'clip'
,
None
)
is
None
,
'clipping not supported'
hidden_size
=
node
.
get_attr
(
'hidden_size'
,
None
)
if
hidden_size
is
None
:
r_shape
=
val_r
.
out_shapes
[
0
]
if
r_shape
:
hidden_size
=
r_shape
[
-
1
]
if
hidden_size
is
None
:
w_shape
=
var_w
.
out_shapes
[
0
]
if
w_shape
:
hidden_size
=
w_shape
[
-
2
]
//
3
if
hidden_size
is
None
and
val_b
:
b_shape
=
val_b
.
out_shapes
[
0
]
if
b_shape
:
hidden_size
=
b_shape
[
-
1
]
//
6
if
hidden_size
is
None
and
val_xh
:
xh_shape
=
val_xh
.
out_shapes
[
0
]
if
xh_shape
:
hidden_size
=
xh_shape
[
-
1
]
direction
=
node
.
get_attr
(
'direction'
,
'forward'
)
assert
direction
!=
'bidirectional'
,
'direction = bidirectional not supported'
activations
=
node
.
get_attr
(
'activations'
,
[
'Sigmoid'
,
'Tanh'
])
assert
len
(
activations
)
==
2
,
'bidirectional operation not supported'
assert
node
.
get_attr
(
'linear_before_reset'
,
0
)
==
0
,
'only linear_before_reset = 0 supported'
activations
=
[
s
.
lower
()
for
s
in
activations
]
gate_activation
,
candidate_activation
=
activations
is_reverse
=
direction
==
'reverse'
var_x0
=
node
.
layer_name
+
'_x0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
val_x
,
output
=
var_x0
,
param_attr
=
{
'axes'
:
[
1
],
'name'
:
string
(
var_x0
)})
var_w0
=
node
.
layer_name
+
'_w0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
val_w
,
output
=
var_w0
,
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_w0
)})
var_fc
=
node
.
layer_name
+
'_fc'
var_mm
=
(
node
.
layer_name
+
'_mm'
)
if
val_b
else
var_fc
node
.
fluid_code
.
add_layer
(
'matmul'
,
inputs
=
{
'x'
:
var_x0
,
'y'
:
var_w0
},
output
=
var_mm
,
param_attr
=
{
'transpose_x'
:
0
,
'transpose_y'
:
1
,
'name'
:
string
(
var_mm
)
})
var_r0
=
node
.
layer_name
+
'_r0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
val_r
,
output
=
var_r0
,
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_r0
)})
var_r0t
=
node
.
layer_name
+
'_r0t'
node
.
fluid_code
.
add_layer
(
'transpose'
,
inputs
=
var_r0
,
output
=
var_r0t
,
param_attr
=
{
'perm'
:
[
1
,
0
],
'name'
:
string
(
var_r0t
)})
if
val_b
:
var_bi
=
node
.
layer_name
+
'_bi'
var_bh
=
node
.
layer_name
+
'_bh'
node
.
fluid_code
.
add_layer
(
'split'
,
inputs
=
val_b
,
output
=
var_bi
+
','
+
var_bh
,
param_attr
=
{
'dim'
:
1
,
'num_or_sections'
:
[
hidden_size
*
3
,
hidden_size
*
3
],
'name'
:
string
(
node
.
layer_name
+
'.b/split'
)
})
var_bi0
=
node
.
layer_name
+
'_bi0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
var_bi
,
output
=
var_bi0
,
param_attr
=
{
'axes'
:
[
0
],
'name'
:
string
(
var_bi0
)})
node
.
fluid_code
.
add_layer
(
'elementwise_add'
,
inputs
=
[
var_mm
,
var_bi0
],
output
=
var_fc
,
param_attr
=
{
'axes'
:
1
,
'name'
:
string
(
node
.
layer_name
+
'.i/bias'
)
})
if
val_xh
:
var_xh0
=
node
.
layer_name
+
'_xh0'
node
.
fluid_code
.
add_layer
(
'squeeze'
,
inputs
=
val_xh
,
output
=
var_xh0
,
param_attr
=
{
'axes'
:
[
1
],
'name'
:
string
(
var_xh0
)})
var_y00
=
node
.
layer_name
+
'_y00'
attr
=
{
'origin_mode'
:
True
,
'h_0'
:
var_xh0
if
val_xh
else
None
,
'is_reverse'
:
is_reverse
,
'gate_activation'
:
string
(
gate_activation
),
'candidate_activation'
:
string
(
candidate_activation
),
'param_attr'
:
string
(
var_r0t
),
'bias_attr'
:
string
(
var_bh
)
if
val_b
else
False
,
}
node
.
fluid_code
.
add_layer
(
'dynamic_gru'
,
inputs
=
var_fc
+
','
+
str
(
hidden_size
),
output
=
var_y00
,
param_attr
=
attr
)
num_opt
=
len
(
node
.
layer
.
output
)
if
num_opt
>
0
and
node
.
layer
.
output
[
0
]
!=
''
:
node
.
fluid_code
.
add_layer
(
'unsqueeze'
,
inputs
=
var_y00
,
output
=
node
.
layer
.
output
[
0
],
param_attr
=
{
'axes'
:
[
1
,
1
],
'name'
:
string
(
node
.
layer
.
output
[
0
])
})
if
num_opt
>
1
and
node
.
layer
.
output
[
1
]
!=
''
:
node
.
fluid_code
.
add_layer
(
'unsqueeze'
,
inputs
=
var_y00
,
output
=
node
.
layer
.
output
[
1
],
param_attr
=
{
'axes'
:
[
1
,
1
],
'name'
:
string
(
node
.
layer
.
output
[
1
])
})
x2paddle/op_mapper/paddle2onnx/opset9/opset.py
浏览文件 @
a6759829
...
@@ -875,6 +875,14 @@ class OpSet9(object):
...
@@ -875,6 +875,14 @@ class OpSet9(object):
axes
=
op
.
attr
(
'axes'
))
axes
=
op
.
attr
(
'axes'
))
return
node
return
node
def
cast
(
self
,
op
,
block
):
node
=
helper
.
make_node
(
'Cast'
,
inputs
=
op
.
input
(
'X'
),
outputs
=
op
.
output
(
'Out'
),
to
=
self
.
paddle_onnx_dtype_map
[
op
.
attr
(
'out_dtype'
)])
return
node
def
arg_max
(
self
,
op
,
block
):
def
arg_max
(
self
,
op
,
block
):
node
=
helper
.
make_node
(
node
=
helper
.
make_node
(
'ArgMax'
,
'ArgMax'
,
...
...
x2paddle/op_mapper/tf_op_mapper_nhwc.py
浏览文件 @
a6759829
...
@@ -299,6 +299,10 @@ class TFOpMapperNHWC(OpMapper):
...
@@ -299,6 +299,10 @@ class TFOpMapperNHWC(OpMapper):
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
pad_mode
=
node
.
get_attr
(
"padding"
).
decode
()
channel_first
=
data_format
==
"NCHW"
channel_first
=
data_format
==
"NCHW"
if
data_format
==
"NHWC"
:
n
,
h
,
w
,
c
=
input
.
out_shapes
[
0
]
else
:
n
,
c
,
h
,
w
=
input
.
out_shapes
[
0
]
if
kernel
.
layer_type
==
'Const'
:
if
kernel
.
layer_type
==
'Const'
:
kernel_value
=
kernel
.
value
kernel_value
=
kernel
.
value
...
@@ -329,10 +333,15 @@ class TFOpMapperNHWC(OpMapper):
...
@@ -329,10 +333,15 @@ class TFOpMapperNHWC(OpMapper):
"dilation"
:
dilations
[
2
:
4
],
"dilation"
:
dilations
[
2
:
4
],
"padding"
:
string
(
pad_mode
)
"padding"
:
string
(
pad_mode
)
}
}
if
hasattr
(
node
,
'dilation'
)
and
attr
[
'dilation'
]
==
[
1
,
1
]:
if
hasattr
(
node
,
'dilation'
)
and
attr
[
'dilation'
]
==
[
1
,
1
]:
if
len
(
node
.
dilation
)
==
1
:
if
len
(
node
.
dilation
)
==
1
:
attr
[
'dilation'
]
=
[
1
,
node
.
dilation
[
0
]]
attr
[
'dilation'
]
=
[
1
,
node
.
dilation
[
0
]]
if
c
==
-
1
:
reshape_attr
=
{
"shape"
:
[
0
,
k_size
[
2
],
0
,
0
]}
node
.
fluid_code
.
add_layer
(
"reshape"
,
inputs
=
input
,
output
=
input
,
param_attr
=
reshape_attr
)
node
.
fluid_code
.
add_layer
(
node
.
fluid_code
.
add_layer
(
"conv2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
"conv2d"
,
inputs
=
input
,
output
=
node
,
param_attr
=
attr
)
if
not
channel_first
:
if
not
channel_first
:
...
@@ -748,11 +757,12 @@ class TFOpMapperNHWC(OpMapper):
...
@@ -748,11 +757,12 @@ class TFOpMapperNHWC(OpMapper):
self
.
add_omit_nodes
(
begin
.
layer_name
,
node
.
layer_name
)
self
.
add_omit_nodes
(
begin
.
layer_name
,
node
.
layer_name
)
begin
=
begin
.
value
.
tolist
()
begin
=
begin
.
value
.
tolist
()
else
:
else
:
begin
=
begin
begin
=
self
.
decoder
.
infer_tensor
(
begin
).
tolist
()
shape
=
begin
.
out_shapes
[
0
]
attr
=
{
"shape"
:
shape
}
# shape = begin.out_shapes[0]
node
.
fluid_code
.
add_layer
(
# attr = {"shape": shape}
"reshape"
,
inputs
=
begin
,
output
=
begin
,
param_attr
=
attr
)
# node.fluid_code.add_layer(
# "reshape", inputs=begin, output=begin, param_attr=attr)
if
size
.
layer_type
==
"Const"
:
if
size
.
layer_type
==
"Const"
:
self
.
add_omit_nodes
(
size
.
layer_name
,
node
.
layer_name
)
self
.
add_omit_nodes
(
size
.
layer_name
,
node
.
layer_name
)
size
=
size
.
value
.
tolist
()
size
=
size
.
value
.
tolist
()
...
...
x2paddle/optimizer/tf_optimizer.py
浏览文件 @
a6759829
...
@@ -863,6 +863,9 @@ class TFOptimizer(object):
...
@@ -863,6 +863,9 @@ class TFOptimizer(object):
weight
=
numpy
.
expand_dims
(
weight
,
2
)
weight
=
numpy
.
expand_dims
(
weight
,
2
)
weight
=
numpy
.
expand_dims
(
weight
,
3
)
weight
=
numpy
.
expand_dims
(
weight
,
3
)
self
.
op_mapper
.
weights
[
in_nodes3
[
0
].
layer_name
]
=
weight
self
.
op_mapper
.
weights
[
in_nodes3
[
0
].
layer_name
]
=
weight
# fix bug in Paddle1.8.3 and may change in next version.
self
.
op_mapper
.
weights
[
in_nodes3
[
0
].
layer_name
+
'_1'
]
=
weight
.
reshape
(
1
,
-
1
)
in_nodes3
[
0
].
fluid_code
.
layers
[
0
].
param_attr
[
"shape"
]
=
[
in_nodes3
[
0
].
fluid_code
.
layers
[
0
].
param_attr
[
"shape"
]
=
[
1
,
in_shape
[
-
1
],
1
,
1
1
,
in_shape
[
-
1
],
1
,
1
]
]
...
@@ -885,7 +888,7 @@ class TFOptimizer(object):
...
@@ -885,7 +888,7 @@ class TFOptimizer(object):
node
.
fluid_code
.
clear
()
node
.
fluid_code
.
clear
()
attr
=
{
attr
=
{
"mode"
:
string
(
mode
),
"mode"
:
string
(
mode
),
"param_attr"
:
string
(
in_nodes3
[
0
].
layer_name
)
"param_attr"
:
string
(
in_nodes3
[
0
].
layer_name
+
"_1"
)
}
}
node
.
fluid_code
.
add_layer
(
node
.
fluid_code
.
add_layer
(
...
...
x2paddle_model_zoo.md
浏览文件 @
a6759829
# X2Paddle模型测试库
# X2Paddle模型测试库
> 目前X2Paddle支持
5
0+的TensorFlow OP,40+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下模型列表中测试了X2Paddle的转换。
> 目前X2Paddle支持
7
0+的TensorFlow OP,40+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下模型列表中测试了X2Paddle的转换。
**注:**
受限于不同框架的差异,部分模型可能会存在目前无法转换的情况,如TensorFlow中包含控制流的模型,NLP模型等。对于CV常见的模型,如若您发现无法转换或转换失败,存在较大diff等问题,欢迎通过
[
ISSUE反馈
](
https://github.com/PaddlePaddle/X2Paddle/issues/new
)
的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
**注:**
受限于不同框架的差异,部分模型可能会存在目前无法转换的情况,如TensorFlow中包含控制流的模型,NLP模型等。对于CV常见的模型,如若您发现无法转换或转换失败,存在较大diff等问题,欢迎通过
[
ISSUE反馈
](
https://github.com/PaddlePaddle/X2Paddle/issues/new
)
的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
...
@@ -20,10 +20,13 @@
...
@@ -20,10 +20,13 @@
| ResNet_V1_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|-|
| ResNet_V1_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|-|
| ResNet_V2_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|-|
| ResNet_V2_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|-|
| UNet |
[
code1
](
https://github.com/jakeret/tf_unet
)
/
[
code2
](
https://github.com/lyatdawn/Unet-Tensorflow
)
|-|
| UNet |
[
code1
](
https://github.com/jakeret/tf_unet
)
/
[
code2
](
https://github.com/lyatdawn/Unet-Tensorflow
)
|-|
|MTCNN |
[
code
](
https://github.com/AITTSMD/MTCNN-Tensorflow
)
|-|
| MTCNN |
[
code
](
https://github.com/AITTSMD/MTCNN-Tensorflow
)
|-|
|YOLO-V3|
[
code
](
https://github.com/YunYang1994/tensorflow-yolov3
)
| 转换需要关闭NHWC->NCHW的优化,见
[
文档Q2
](
FAQ.md
)
|
| YOLO-V3|
[
code
](
https://github.com/YunYang1994/tensorflow-yolov3
)
| 转换需要关闭NHWC->NCHW的优化,见
[
文档Q2
](
FAQ.md
)
|
| FALSR |
[
code
](
https://github.com/xiaomi-automl/FALSR
)
| - |
| FALSR |
[
code
](
https://github.com/xiaomi-automl/FALSR
)
| 需使用参数without_data_format_optimization |
| DCSCN |
[
code
](
https://modelzoo.co/model/dcscn-super-resolution
)
| - |
| DCSCN |
[
code
](
https://modelzoo.co/model/dcscn-super-resolution
)
| 需使用参数without_data_format_optimization |
| Bert(albert) |
[
code
](
https://github.com/google-research/albert#pre-trained-models
)
| 需使用参数without_data_format_optimization |
| Bert(chinese_L-12_H-768_A-12) |
[
code
](
https://github.com/google-research/bert#pre-trained-models
)
| 需使用参数without_data_format_optimization |
| Bert(multi_cased_L-12_H-768_A-12) |
[
code
](
https://github.com/google-research/bert#pre-trained-models
)
| 需使用参数without_data_format_optimization |
## Caffe
## Caffe
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录